Recollections about
Data Integrity Limitations in
Hybrid Security Architectures

Workshop on Innovations in Strong Access Control
Monterey, CA
September 25-27, 2000
Cynthia Irvine and Timothy Levin
Center for INFOSEC Studies and Research
Computer Science Department
Naval Postgraduate School, Monterey, California, USA
irvine(levin)@cs.nps.navy.mil

Sponsorship and Related Work

• This work was sponsored in part by:
 – the Community Intelligence Office and
 – the DARPA/ITO Quorum program

• Principal aspects of this presentation were recorded as a technical report in:
Outline

- Background
 - Integrity
 - High Assurance Systems
- Hybrid Security Architectures
- Integrity and HSAs
- Conclusion

Integrity

- Dual of Confidentiality
 - Labels indicate potential loss from
 - unauthorized modification
 - vs. unauthorized disclosure
- Translation from Confidentiality
 - inverted/convoluted
 - difficult concepts [Gasser]
- Analysis can be overlooked
Integrity (2)

• Inherent Integrity and Confidentiality
 – explicit labels
 – or implicitly understood
• Unclear distinctions/assumptions
 – High confidentiality implies high integrity?
• Integrity of Code
 – fidelity to original - e.g., distributed version
 – fidelity to described intent
 • correct functionality
 – no additional functionality
 • trap doors, Trojan horses

High Assurance Systems

• Enforce confidentiality and integrity
 – to defined degree of assurance
• Various architectural approaches...
In the Beginning...

Distributed
Vertically Distributed

- User
 - Application
 - ORB
 - RDBMS
 - File Server

Need to Generalize Remote Access

- remote programs
- remote data
- remote processors, devices
High Assurance Systems

- Expensive
- Incompatible, “stovepipes”
- Responses
 - COTS in Government RFPs
 - Balanced Assurance at vendor initiative
Balanced Assurance

- Not Trusted COTS Application
- RDBMS
- EAL5 DAC
- Trusted B3 MAC

Hybrid Security Architecture

- Balanced Assurance + COTS + MLS
- Configuration Components
 - Untrusted COTS terminals/workstations
 - Untrusted COTS applications
 - Storage devices
 - Multilevel data
 - Multilevel TCB mechanisms (RVM)
 - TCB extensions
 - Network Connections
 - Single and multilevel
Monolithic

<table>
<thead>
<tr>
<th>High COTS User Interface</th>
<th>Low COTS User Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>COTS Application</td>
<td>COTS Application</td>
</tr>
<tr>
<td>Reference Validation Mechanism</td>
<td></td>
</tr>
</tbody>
</table>

- **Not Trusted**
- **Trusted**

Switch-Based

- COTS Client User Interface
- RVM

- **Not Trusted**
- **Trusted**
Distributed

MLS Access Enforcement

• Reference Validation Mechanism
 – mediates access to objects
 – controls object creation, storage, access, I/O
 – prevents data leakage across MAC partitions
 • confidentiality write-down or read-up
 • integrity read-down or write-up (if enforced)

• Other modules constrained by RVM
 – leakage
System Confidentiality Capacity

• System trusted for confidentiality
 – to confidentiality limit of reference validation module
 • Assigned range
 • Yellow Book
 – Maps assurance levels to confidentiality levels

Data Integrity

• Integrity Semantics
 – dual of confidentiality
 • “prevents data contamination from untrusted software”
 – was the modification correct?
 • Within the partition
 • Code trusted to handle data correctly
 – to its level of assurance
 • No Yellow Book for integrity
 • Look to code integrity label
Code Module Integrity Label

- What the system designer needs it to be
 - Coherent network architecture
 - Limit: pedigree of code

Trust in Low-Assurance Code

- Evaluation below B2/EAL5
 - little or no code review required
 - no examination for Trojan horses/trap doors
 - no code correspondence
 - no trusted distribution
 - potential for unknown functionality
 - e.g., “Easter eggs” common in commercial software
 - testing doesn’t address unknowns
- Integrity untrusted (“low assurance”)
 - integrity label
System Integrity Capacity

• *Data-Path Modules* handle data between user and store
 • Without integrity enforcement all DPM could modify data (*Data-Modifying Path Modules*)
 • Integrity enforcement can limit which modules can be DMPM
 – depending on module and data labels

• System trusted for integrity
 • to integrity limit of least-trusted DMPM
 – with or without RVM integrity enforcement

Integrity Capacity

• Two Cases
 – Integrity not supported
 • system can take in data higher in integrity than system
 • data output is lowered to integrity of code
 – de facto label
 – Integrity Supported by RVM
 • cannot take in data higher in integrity than code
 – problem not addressed by ring mechanisms
 • system regulates its own integrity capacity
 • data is not corrupted by less-trusted code
HSA and Integrity

- HSA applications and user interfaces
 - COTS
 - below B2/EAL5 (integrity untrusted)
 - generally designed to modify data
- HSA systems have untrusted or low assurance integrity capacity
- Hybrid Security Architecture systems not suitable for AIS environments with critical data integrity requirements

Summary

- *Code-module integrity* limits *system integrity capacity*
 - Not new information
 - Not always remembered
 - Not always communicated to sponsors and customers
- HSA systems not suitable for environments that have critical data integrity requirements