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ABSTRACT
The rapid expansion of the Industrial Internet of Things (IIoT) has
brought forward critical research challenges concerning scalability,
robustness, and security. Traditional IIoT infrastructures, confined
to lab environments with a limited number of Programmable Logic
Controllers (PLCs), hamper large-scale research due to cost and
scalability constraints. We propose a solution in the form of a highly
scalable virtual PLC (vPLC) for IIoT applications. Our vPLC, as a
software-as-a-service (SaaS), can generate hundreds of thousands
of virtual PLC instances to simulate a large-scale IIoT network. The
vPLC mimics the functionalities of an actual PLC by learning pro-
tocol semantics from network dumps of real PLCs and generating
PLC templates. This ability allows users to initiate various PLC
instances, thereby accurately replicating PLC functionalities like
session initiation and control logic handling. In essence, our vPLC
serves as an economical, scalable, and flexible research tool that en-
hances IIoT research and paves the way for advanced applications
such as forensic analysis and threat intelligence within IIoT.
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1 INTRODUCTION
The advent of the Industrial Internet of Things (IIoT) has revolu-
tionized the industry sectors, creating a new wave of innovation
often referred to as Industry 4.0 [26]. This transformation is brought
about by the integration of internet connectivity with tradition-
ally isolated devices, particularly Programmable Logic Controllers
(PLCs) [4]. As essential components in automation, PLCs have now
become integral elements of IIoT, leading to substantial operational
and economic benefits. The integration of these devices has opened
up an era of cyber-physical systems, where digital and physical
components seamlessly interact in real-time to optimize processes
and improve efficiency [30].

However, the rise of IIoT is not without its challenges. The
interconnected nature of the IIoT makes it an attractive target
for cyber-attacks, leading to a surge in security issues [2, 3, 5–
8, 10, 16, 17, 23, 28]. The potential consequences of these attacks
range from disruptions in industrial operations to severe damage
to physical assets, creating an urgent need for robust security mea-
sures [15].

Addressing these security challenges requires extensive testing
and experimentation. However, the lack of comprehensive and scal-
able IIoT testbeds poses a significant barrier. Most current testbeds
are either confined to laboratory environments with a limited num-
ber of PLCs [14] or situated within industries where data access is
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heavily restricted [13]. These testbeds are costly, complex to set up,
and prone to permanent damage from experimental attacks. This
situation curtails large-scale studies and impedes progress in IIoT
security research.

To address inherent challenges in traditional PLC systems, we
introduce an innovative solution: a virtual PLC (vPLC) designed
specifically for IIoT applications. This vPLC is born from the soft-
warization approach, positioned as a Software as a Service (SaaS) ca-
pable of generating and overseeing countless virtual PLC instances.
This allows it to emulate an extensive IIoT network, thereby furnish-
ing a scalable, economical, and reusable platform for IIOT research.
Unlike conventional hardware-based PLCs, vPLC instances can be
swiftly re-instantiated after a cyber-attack, substantially reducing
the likelihood of irreversible damage.

In the vPLC’s design, the first step is to capture network data
from real PLCs. This data is closely examined to understand protocol
semantics, which means we pinpoint the exact locations and details
of different message fields. From this deep understanding, the vPLC
builds a PLC template. This template, which combines protocol
semantics and PLC’s typical responses to different requests, is at
the heart of our system.

After setting up these basics, the vPLC starts acting like a real
PLC server. For this simulation to run, it needs the PLC template and
some old network data from a real PLC. When someone connects
to the vPLC, they’re given the impression they’re communicating
with a real PLC. In reality, the vPLC checks the old network data,
finds the right response for the user’s request, tweaks it, and sends
it back.

This approach stands out due to its adaptability. Instead of simply
mimicking a real PLC’s function, it enables the launch of multiple
vPLC versions concurrently. Depending on the research scenario,
each instance can utilize either consistent network data from a
single PLC or diverse data sets.

We demonstrate a significant application of the vPLC: forensic
analysis of attacks on PLCs in an IIoT environment [25, 29]. These
applications underscore the potential of the vPLC as a potent tool
in advancing IIoT research and enhancing security measures.

This paper details the development and evaluation of the vPLC,
along with its applications in IIoT security research. The findings
presented here pave the way for more extensive and diverse re-
search in the field of IIoT, contributing to the resilience and robust-
ness of Industry 4.0. A preliminary version of vPLC is available at
[27].

2 INDUSTRIAL IOT
Historically, Cyber-Physical Systems (CPS) have operated in their
own silos, performing repetitive operations with minimal optimiza-
tion or external interaction. With the advent of Industry 4.0, how-
ever, the demand for intelligent manufacturing has intensified. This
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has led to the emergence of the Industrial Internet of Things (IIoT),
which seeks to bridge the gap between Operational Technology
(OT) and the world of data and business operations. Rather than
functioning independently, IIoT utilizes a cooperative approach.
Data is collected from individual CPS using sensors, actuators, and
other devices, and processed in the IT domain. This data analysis
gives rise to effective industrial strategies to optimize resources,
decrease expenses, and augment operational efficacy. Once devised,
these strategies are executed back into the CPS. As shown in figure
1 the Gartner IIoT architecture [11], a universally acknowledged
model, divides IIoT into three distinct tiers: Edge, Platform, and
Enterprise.

The Edge tier includes the actual cyber-physical systems, sen-
sors, actuators, and Programmable Logic Controllers (PLCs). Its
main functions include data gathering, monitoring, and control of
physical processes.

The Platform tier acts as a liaison, offering services such as data
filtering, compilation, and storage. This tier preps and transmits
the data to the Enterprise level.

The Enterprise tier is where the central IIoT applications are
housed. This layer applies machine learning and data processing
algorithms to the received data, contributing to the optimization of
industrial operations.

Each of these tiers employs different communication networks
tailored to their unique needs. The Edge tier uses a serial or prox-
imity network for connecting different devices, the Platform tier
leverages Wide Area Networks (WANs) to establish a link between
the edge and the platform, and high-speed internet technologies
such as 5G are used to connect the Platform and Enterprise tiers.

Despite the array of research challenges posed by IIoT, we have
chosen to focus on the Cyber-Physical Systems (CPS) within the
Edge tier that blends physical and computational components in
this work.

2.1 PLC in IIoT
Cyber-Physical Systems (CPS) are integrative entities that connect
the physical world with the digital realm. They are composed of
sensors, actuators, and control devices, with Programmable Logic
Controllers (PLCs) being a predominant example. In a typical CPS
setup, sensors capture signals from physical processes. These input
signals are then processed by the PLC in accordance with user-
defined control logic (that can be written in and downloaded to the
PLC using the engineering software). After processing, the PLC
directs the output to the actuators, which in turn manipulate the
physical processes. Additionally, PLCs possess network commu-
nication capabilities and use ICS protocols such as Modbus, ENIP,
S7Comm, etc. The PLCs acting as a server communicate in the form
of request and response, i.e. for every request message the PLC
receives it sends a response. This enables them to interact with
other PLCs, engineering software (proprietary software to monitor
and program a PLC), Human Machine Interfaces (HMIs), and the
platform tier services within the IIoT framework.

PLCs serve as pivotal embedded devices within the Industrial
Internet of Things (IIoT) framework. They establish a critical link
between Operational Technology (OT) and Information Technology
(IT), making them indispensable to the contemporary industrial

landscape. However, their central role also makes PLCs prime tar-
gets for numerous cyber-attacks in IIoT. As a result, continuous
research is needed to improve security and carry out investiga-
tions when attacks occur [18–22]. This ensures that PLCs, and by
extension IIoT networks, remain secure and reliable.

3 MOTIVATION
As the Industrial Internet of Things (IIoT) continues to evolve,
Programmable Logic Controllers (PLCs) serve as the critical link
between the digital and physical realms. However, ensuring their
security requires realistic testbeds to rigorously refine our defensive
strategies. Existing PLC testbeds, whether in industrial environ-
ments or laboratories, often fall short of the complexities inher-
ent in IIoT networks. Industrial testbeds present significant data
acquisition challenges and cannot support potentially disruptive
experiments. Laboratory-based testbeds, though more accessible,
lack the scale to facilitate comprehensive studies.

To serve as a fitting testing ground, a test bed should ideally
embody scalability, configurability, and durability. However, con-
ventional physical testbeds often fail to meet these criteria, mainly
due to limited scalability, restricted configurability, and high sus-
ceptibility to damage, leading to steep repair or replacement costs.

To tackle these issues, we propose the vPLC test bed concept,
where instead of using physical PLCs, we simulate them in a soft-
ware environment. This approach provides a robust, scalable, and
cost-efficient platform, ideal for extensive IIoT network research.

Our vPLC mechanism uses packet replay, leveraging network
dumps from real PLC communications, to effectively mimic the
network behavior of actual PLCs. This innovative shift towards
‘softwarization’ offers a flexible and resilient platform for develop-
ing and perfecting security and forensic solutions, shaping a safer
IIoT landscape.

4 vPLC DESIGN
4.1 Overview
The vPLC testbed can consist of one or more virtual PLCs. Given the
network dump of a real PLC’s communication, the objective of the
virtual PLCs is to replay this network dump, replicating the same
network abstraction as a real PLC, and providing the application-
level functionalities of a real PLC. This process necessitates three
functions: (1) Data Management: Using the network dump, the
virtual PLC should be capable of organizing the packets to facilitate
packet replay and template extraction; (2) Template Generation:
The virtual PLC should learn various session-dependent fields and
their semantics to update them for new sessions (replay); and (3)
Communication Server: In a manner similar to a physical PLC, the
virtual PLC should include a communication server and be capable
of responding to various request messages.

Figure 2 provides an overview of the vPLC testbed. In the data
management phase, the vPLC extracts different sessions from the
network dump, identifies request and response messages, and sub-
sequently stores them in a database for further analysis. During the
template generation block, the vPLC performs various analytical
operations on the communication data stored in the database. This
analysis aims to extract the message structure, location, and seman-
tics of different fields in the messages to generate a PLC template.



vPLC: A scalable PLC testbed for IIoT security research ICSS’23, Dec 05, 2023, Austin, TX

Sensors & Actuators

Sensors & Actuators

Sensors & Actuators

Proximity, serial
connection

PLC

PLC

PLC

Edge 
Gateway

LAN

LAN

LAN
Data Storage

Data Processing

Monitoring and 
Control

WAN

Data Visualization

Data Analytics

Process Integration

IIOT Applications

Proximity, serial
connection

Proximity, serial
connection

Edge Platform Enterprise

WAN

Physical 
Process

Physical 
Process

Physical 
Process

Figure 1: Three tier Gartner IIoT architecture, the Cyber-Physical Systems (physical process, sensors, actuators, and the PLC)
reside in the Edge tier

Template GenerationData Management Communication interface

Virtual PLCs

Request

Response

PLC
Server

Message
ProcessorSession 

Dependent
Fields

Static
Fields

Dynamic
Fields

Data
Field

PLC Template

Network 
Dumps

Message
Tagging Database Client

Figure 2: An overview of vPLC

Finally, in the communication interface, the vPLC uses the PLC
template and the network dumps to instantiate various instances
of virtual PLCs, thereby mimicking a cyber-physical system.

4.2 Data processing
The initial step for the vPLC involves processing network dumps,
collected from the active communication of a genuine PLC. These
dumps, primarily based on proprietary ICS protocols like Modbus,
S7Comm, ENIP, and others, pose significant challenges due to their
binary nature. The intricacy deepens as these protocols are not
only proprietary but many PLCs, such as Modicon M221, employ
multiple nested protocols; for instance, UMAS embedded within
the Modbus protocol. Distinguishing individual messages within
this layered communication and subsequently organizing them into
corresponding request-response pairs is far from straightforward.
Without a clear understanding or specialized tools, extracting use-
ful semantic information from these packet captures demands a
rigorous, structured methodology.

Message tagging: This begins with identifying distinct communi-
cation sessions and recognizing the application-level request and
response messages. The vPLC can extract these separate communi-
cation sessions from the network dumps based on the IP address
and port of the PLC. We then identify the request and response
messages within these dumps. Packets whose destination IP and
port match the PLC’s are tagged as request messages, while those
whose source IP and port align with the PLC’s are tagged as re-
sponse messages.

Database:Once the messages have been tagged, they are organized
into an efficient database. We treat the application message as
a complex binary structure, storing the messages as hex strings,
allowing us to remain agnostic of the ICS protocol. To pair the
request and response messages together, we’ve developed a queue
system for request messages. Each request message enters a queue
and, when a response message is identified, it retrieves the first
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message in the queue. This paired message is then stored as a key-
value pair in the database. Algorithm 1 outlines the process of
creating databases.

Algorithm 1DataManagement: Storing the request-response pairs
Require: 𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑠𝑟𝑐_𝑖𝑝, 𝑝𝑙𝑐_𝑖𝑝, 𝑝_𝑝𝑜𝑟𝑡
1: 𝑝𝑐𝑎𝑝 ← rdpcap(𝑓 𝑖𝑙𝑒𝑛𝑎𝑚𝑒)
2: 𝑡𝑎𝑏𝑙𝑒 ← empty dictionary
3: 𝑟𝑒𝑞← empty string
4: 𝑠𝑡𝑎𝑐𝑘 ← empty stack
5: for each 𝑝𝑘𝑡 in 𝑝𝑐𝑎𝑝 do
6: if 𝑝𝑘𝑡 contains TCP then
7: ℎ𝑒𝑥_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ← hexlify(payload of 𝑝𝑘𝑡 )
8: if source of 𝑝𝑘𝑡 == 𝑠𝑟𝑐_𝑖𝑝 and destination of 𝑝𝑘𝑡 ==

𝑝𝑙𝑐_𝑖𝑝 and length of payload > 10 then
9: push ℎ𝑒𝑥_𝑝𝑎𝑦𝑙𝑜𝑎𝑑 to 𝑠𝑡𝑎𝑐𝑘
10: else if source of 𝑝𝑘𝑡 == 𝑝𝑙𝑐_𝑖𝑝 and destination of 𝑝𝑘𝑡

== 𝑠𝑟𝑐_𝑖𝑝 then
11: 𝑟𝑒𝑞← pop first element from 𝑠𝑡𝑎𝑐𝑘

12: 𝑡𝑎𝑏𝑙𝑒 [𝑟𝑒𝑞] ← ℎ𝑒𝑥_𝑝𝑎𝑦𝑙𝑜𝑎𝑑
13: end if
14: end if
15: end for

This methodology ensures we maintain an organized and effec-
tive system for interpreting and learning from the communication
data.

4.3 PLC Template
The vPLC utilizes a packet replay technique to simulate a real PLC’s
behavior but replaying network traffic poses numerous challenges.
Firstly, several session-dependent fields may exist within a message.
The vPLC needs to identify these and establish their relationships in
request-response messages. Secondly, according to [1], the message
structure changes based on the operation performed, e.g., writing to
the PLC memory yields a different request-response structure than
reading data from it. Therefore, if the network dump provided to
the vPLC was captured during a control logic upload, it could reuse
the message after updating the session-dependent fields. However,
if captured during a download, the vPLC needs to ascertain the up-
load message structure and use the downloaded traffic to populate
and transmit the upload message. So vPLC solves these challenges
by creating a template for each PLC it is mimicking.

Identifying SessionDependent Fields:To identify session depen-
dent fields, the vPLC uses two network dumps where the same PLC
operation was executed. These dumps generate separate databases
and then form tuples of matching request and response messages
from the two different sessions. Given that messages are stored
as hex strings, string similarity, and message length are used to
identify matching pairs.

Every tuple then undergoes a differential analysis to identify
differing bytes between the two request messages, thereby locat-
ing the session-dependent fields. The session-dependent fields in
request and response messages are compared to establish their re-
lationship. If the session-dependent fields match, the value from

the new request message is used to update the fields in the old
response message, enabling the replay of the old response message.
The identification process is summarized in Algorithm 2.

Algorithm 2 Session Dependent Fields Identification
1: Let 𝐷1, 𝐷2 be two databases of network dumps
2: Let 𝑇𝑢𝑝𝑙𝑒𝑠 be an empty list
3: Let 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 be an empty dictionary
4: for each 𝑟𝑒𝑞1𝑖 in 𝐷1 do
5: Find𝑚𝑎𝑡𝑐ℎ𝑟𝑒𝑞 using findMaxMatch(𝑟𝑒𝑞1𝑖 , 𝐷2)
6: 𝑇𝑢𝑝𝑙𝑒𝑠 .append([𝑟𝑒𝑞1𝑖 ,𝑚𝑎𝑡𝑐ℎ𝑟𝑒𝑞 ,𝑟𝑒𝑠1𝑖 ,𝑟𝑒𝑠𝑚𝑎𝑡𝑐ℎ𝑟𝑒𝑞 ])
7: end for
8: for each 𝑇 in 𝑇𝑢𝑝𝑙𝑒𝑠 do
9: for 𝑖𝑛𝑑𝑒𝑥 = 0 to length(𝑇 [0]) do
10: if 𝑇 [0] [𝑖𝑛𝑑𝑒𝑥] ≠ 𝑇 [1] [𝑖𝑛𝑑𝑒𝑥] then
11: if 𝑖𝑛𝑑𝑒𝑥 in 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 then
12: 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖𝑛𝑑𝑒𝑥]+ = 1
13: else
14: 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖𝑛𝑑𝑒𝑥] = 1
15: end if
16: end if
17: end for
18: end for
19: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = tn * length(𝑇𝑢𝑝𝑙𝑒𝑠)
20: 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 = {index: count for index, count in 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 .items() if

count > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}
return 𝐼𝑛𝑑𝑖𝑐𝑒𝑠

Extracting the Message Structure Depending on the operation,
the structure of the request and response messages changes. When
writing data to memory, the client sends a request message con-
taining the write function code, memory address to write to, size of
data to write, and the data or control logic itself. In response, the
PLC sends a success message if the operation was successful, or
an error message otherwise. To read data from the PLC memory,
the client sends a request message containing the read function
code, the memory address to read from, and the size of the data to
read. The PLC then responds with a success message containing
the requested data or an error message. Therefore, if the network
dumps the vPLC is replaying contains read operations, the vPLC
can send the response after updating the session-dependant fields.
However, if the replaying dump only contains write operations and
the vPLC is requested to read, the vPLC must extract the structure
of the read response message, fill it using the messages in the dump,
and then send it as a response to the read request. To extract the
read response structure, the vPLC processes two network dumps
captured while reading and writing the same control logic. This
allows the vPLC to identify the different fields present in a read
response message. Generally, there are four types of fields: static
fields, dynamic fields, session-dependent fields, and control logic
or data fields.

Identifying Static Fields. Algorithm 3 explains the process of
identifying the locations of static fields, the vPLC compares all
the request messages in a network dump and labels all the fields
that remain constant throughout the session (i.e., fields that are
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identical in all request messages) as static in the request. This is
repeated for the response messages, and the locations of static fields
in both request and response messages are compared to identify
their relationships

Algorithm 3 Static Fields Identification
1: Let 𝐷 be the database of network dumps
2: Let 𝑆𝑡𝑎𝑡𝑖𝑐𝐹𝑖𝑒𝑙𝑑𝑠𝑅𝑒𝑞 , 𝑆𝑡𝑎𝑡𝑖𝑐𝐹𝑖𝑒𝑙𝑑𝑠𝑅𝑒𝑠 be empty lists
3: Initiate 𝑖𝑛𝑑𝑒𝑥 = 0
4: while 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷 [0]) do
5: Let 𝑣𝑎𝑙𝑢𝑒 be the value at 𝑖𝑛𝑑𝑒𝑥 in the first request in 𝐷

6: if all request messages in 𝐷 have the same value at 𝑖𝑛𝑑𝑒𝑥
then

7: Append 𝑖𝑛𝑑𝑒𝑥 to 𝑆𝑡𝑎𝑡𝑖𝑐𝐹𝑖𝑒𝑙𝑑𝑠𝑅𝑒𝑞
8: end if
9: Increment 𝑖𝑛𝑑𝑒𝑥
10: end while
11: Repeat the same process for response messages and update

𝑆𝑡𝑎𝑡𝑖𝑐𝐹𝑖𝑒𝑙𝑑𝑠𝑅𝑒𝑠
return 𝑆𝑡𝑎𝑡𝑖𝑐𝐹𝑖𝑒𝑙𝑑𝑠𝑅𝑒𝑞 , 𝑆𝑡𝑎𝑡𝑖𝑐𝐹𝑖𝑒𝑙𝑑𝑠𝑅𝑒𝑠

Identifying Control Logic fields. Identifying the control logic or
data field in the read response message involves observing that
during the reading or writing of a control logic binary, the engi-
neering software consistently divides the binary into equal-sized
chunks. These chunks are written to and read from the same mem-
ory locations in both operations. Therefore, write requests and
read responses containing the same control logic chunk are identi-
fied, the longest common sub-sequence of the two is taken and its
position in the read response is marked.

Identifying Dynamic fields. To locate dynamic fields such as the
length of the request message, a heuristic-based approach is em-
ployed. A window of two bytes (a common size of length fields
in ICS protocols) is rolled on a message and the value inside the
window is compared with the length of the message outside the
window. If they match, the location of the window is marked as
the potential location of the length field. This process is carried out
on each read response message in the database, and the location
that appears in all request messages is labeled as the length field.
Algorithm 4 gives the overview of the dynamic field identification
process. A similar process can be used to identify other dynamic
fields like the checksum etc.

After identifying the different types of fields, the vPLC compiles
them to determine the structure of the read response message. In
the end, all this information, including the message structure, the
location of different fields in the message, and their relationships
in request and response messages, is stored in the PLC template.
This template can then be utilized by the vPLC to accurately replay
the network dump.

4.4 Communication Interface- Virtual PLCs
Having organized the network dump in the database and generated
the PLC template, the next and final component of the vPLC is
the communication interface. The user can instantiate hundreds of
virtual PLC instances, providing them with the network dumps to

Algorithm 4 Dynamic Fields Identification
1: Let 𝐷 be a database of network dump
2: Let 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 be an empty list
3: Let 𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑖𝑒𝑙𝑑𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 be an empty list
4: for each𝑚𝑠𝑔 in 𝐷 do
5: 𝑚𝑠𝑔𝐿𝑒𝑛𝑔𝑡ℎ = length(𝑚𝑠𝑔)
6: for 𝑖𝑛𝑑𝑒𝑥 = 0 to𝑚𝑠𝑔𝐿𝑒𝑛𝑔𝑡ℎ − 2 do
7: 𝑤𝑖𝑛𝑑𝑜𝑤𝑉𝑎𝑙𝑢𝑒 = convertToInteger(𝑚𝑠𝑔[𝑖𝑛𝑑𝑒𝑥 :

𝑖𝑛𝑑𝑒𝑥 + 2])
8: if 𝑤𝑖𝑛𝑑𝑜𝑤𝑉𝑎𝑙𝑢𝑒 =𝑚𝑠𝑔𝐿𝑒𝑛𝑔𝑡ℎ − 𝑖𝑛𝑑𝑒𝑥 − 2 then
9: 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 .append([𝑖𝑛𝑑𝑒𝑥 ,𝑖𝑛𝑑𝑒𝑥+2)
10: end if
11: end for
12: end for
13: for 𝐿 in 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 do
14: if 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 .count(𝐿) = length(𝐷) then
15: 𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑖𝑒𝑙𝑑𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 .append(𝐿)
16: end if
17: end for

return 𝐿𝑒𝑛𝑔𝑡ℎ𝐹𝑖𝑒𝑙𝑑𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

replay (database) and the PLC template. Each virtual PLC mimics
the behavior of a real PLC, offering a network abstraction of a real
PLC.
PLC server: The virtual PLC consists of two main components: the
PLC Server and the Message Processor. The virtual PLC operates
a server (running on the same port as a real PLC), enabling com-
munication with clients who can send different request messages
to it. Upon receiving a request message, the PLC Server forwards
it to the Message Processor, which is tasked with generating an
appropriate response message.
Message Processor: Generating Response Messages: For each
request message, the Message Processor searches the database for a
similar request message, using the message size and string similar-
ity as search parameters. In the first cycle, the Message Processor
looks for all request messages in the database with the same length
as the current request and finds the message with the highest string
similarity. It retrieves the associated response, updates the session-
dependent fields for the new session, and sends it to the PLC Server
to respond to the client.

If the network dump populates the database and the current
operation aligns, the Message Processor will likely find a similar,
same-length request in the database. If not, the Message Processor
won’t find any requests of similar length in the database. In such
cases, during the second round, the Message Processor calculates
the similarity between the current request message and stored
request messages up to the size of the current message.

The Message Processor then selects the message with the high-
est similarity from the database, retrieves the associated response,
and uses it to generate a new response message in line with the
PLC template. This response is then sent to the PLC Server, which
replies to the client. In this way, by responding to all incoming
request messages, the virtual PLC effectively mimics the behavior
and operations of a real PLC.
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Figure 3: Flowchart of virtual PLC communication

5 IMPLEMENTATION
The vPLC system was implemented using Python due to its exten-
sive suite of libraries and ease of readability.

The first step of our process involved dealing with network
dumps, and for this, we relied on Scapy, a powerful Python-based
interactive packet manipulation program and library. Scapy[24]
enabled us to analyze and dissect the network packets, providing
the foundational framework upon which we built our system.

Creating databases was our next step, and for this, we utilized
Python’s built-in dictionary data structure. In our database, each key
corresponds to a request message, with the corresponding response
message stored as its value. This key-value structure provided an
efficient means of retrieving and updating the response messages
associated with each request.

Identifying similar messages required us to calculate the simi-
larity between strings. This was accomplished using Python’s Se-
quenceMatcher function from the difflib library[9]. The Sequence-
Matcher function allowed us to compare two input sequences, in
our case the hex strings of our messages, and determine their level
of similarity.

For the virtual PLC server, we used Python’s socket library. We
used the socket.socket() function to create the server and handle
the networking layer of the vPLC.

Lastly, to detect incoming requests, we employed the sniff func-
tion from Scapy. The sniff function passively listens for packets on
the network, triggering our Message Processor every time a packet
arrives. This allowed our vPLC to dynamically respond to incoming
requests, thereby mimicking the behavior of a real PLC.

6 EVALUATION
The vPLC has the capability to generate multiple virtual PLCs, each
imitating real PLC behavior by replaying captured network traffic.
This ability allows vPLC to create a realistic Industrial Internet of
Things (IIoT) testbed. We primarily wanted to ensure that the vir-
tual PLC could accurately impersonate real PLCs, effectively replay
the captured network dumps, and process the request messages
within a short time frame. These three aspects serve as key matrices
for the evaluation of our proposed system.

Experimental Setup: The evaluation of the Virtual Programmable
Logic Controllers (vPLCs) encompassed their impersonation of
three PLCs: the Allen-Bradley MicroLogix 1400 and 1100, and
Schneider Electric Modicon M221. Corresponding engineering soft-
ware, RSLogix 500 and MachineExpertBasic were used for commu-
nication. The MicroLogix PLCs employ the PCCC protocol within

EtherNet/IP (ENIP), while Modicon M221 uses the UMAS protocol
within Modbus.

The vPLC ran on an Ubuntu 18 VM, while the engineering soft-
ware operated on a Windows 10 VM. All real PLCs, vPLC, and the
Windows VM were networked together, facilitating accurate vPLC
testing and response evaluation.
Experimental Methodology: Experimental Methodology: To sim-
ulate a genuine IIoT scenario, we utilized 20 different control logic
programs of varying sizes and complexities for each PLC. Through
the engineering software, we connected to a real PLC and executed
the ‘upload control logic’ operation, where the software reads the
control logic program running on the PLC and then captures the
ensuing network traffic. This captured data was subsequently fed
into the vPLC, which instantiated a virtual PLC. We methodically
repeated this process for each of the three PLCs: MicroLogix 1400,
MicroLogix 1100, and Modicon M221.

6.1 Impersonation of a real PLC
The primary role of the vPLC is to emulate the communication
characteristics of a real PLC. Consequently, the vPLC must be rec-
ognized as a real PLC by the PLC engineering software, maintain
a viable communication session with the software, and execute
application tasks, such as control logic transfers.

Results: In our evaluation, the vPLCwas successfully recognized
as the real PLCs (MicroLogix 1400, 1100, and Modicon M221) by
the corresponding engineering software. In addition, the vPLC
effectively established and maintained a communication session.
Importantly, control logic upload operations were successful, with
the vPLC uploading all the control logic presented in the network
dumps accurately.

Table 1 summarizes the results of upload operations. We manu-
ally compared the control logic programs (20 each MicroLogix 1400,
1100, and Modicon M221) uploaded by virtual PLC and the real
PLCs. Our experiment showed that they contained the same num-
ber of rungs (blocks of PLC code). This demonstrates the vPLC’s
capacity to effectively impersonate a real PLC and successfully
perform PLC operations such as control logic upload.

6.2 Ability to Replay Network Traffic
The efficacy of the vPLC, which employs a packet replay technique
to mimic a real PLC, relies on two key factors. The first is the com-
pleteness of the database, meaning that the network dump captured
during any PLC operation will contain all messages necessary to
recreate the session, without generating any newmessages from the
engineering software. The second is successful database lookups,
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Table 1: Control Logic Upload Accuracy of vPLC

PLC
# of control
logic files
uploaded

Original
Program
(Rungs)

vPLC
Program
(Rungs)

Upload
Accuracy

%
MicroLogix

1400 20 109 109 100%

MicroLogix
1100 20 235 235 100%

Modicon
M221 20 211 211 100%

Table 2: Request messages received by the virtual PLC and
their identification in the Database

PLC # of
Experiments

# of Request
Messages
Received

# of Request
Messages

Found in DB

Lookup
Success

%
MicroLogix

1400 20 2060 2060 100%

MicroLogix
1100 20 1440 1440 100%

Modicon
M221 20 3500 3500 100%

i.e., the vPLC’s ability to identify the identical request in the data-
base for each received request message. This task is challenging
due to the proprietary nature of ICS protocols and the possibility
of multiple session-dependent fields.

Results: Our results indicate that the network dump indeed
contains all the messages required to successfully recreate a com-
munication session and that the vPLC can effectively locate the
exact message in the database populated by the previous network
dump. Table 2 summarizes the results of our experiments.

During 20 different upload experiments, the MicroLogix 1400
received 2060 messages, all of which were successfully identified
by the vPLC in the database. For the MicroLogix 1100, across 20
experiments, the vPLC received 1440 request messages and located
all of them in the database. Lastly, for the Modicon M221, the vPLC
received 3500 request messages across 20 upload experiments and
successfully identified all the messages in the database. This sug-
gests a successful implementation of the packet replay technique
in the vPLC design.

6.3 Processing Time Comparison
6.3.1 Processing Efficiency Evaluation. For seamless integration
into the IIOT ecosystem, it’s crucial that our vPLC responds to
requests in a timely manner, akin to a real PLC. Therefore, we
compared the request processing times of real and virtual PLCs
under different scenarios tied to the nature of operations conducted
during network dump capture.

We compared the request processing time of a real PLC with the
vPLC under two scenarios: when the network dump was generated
during an upload (read) operation, and when it was created during
a download (write) operation. Our rationale was that the processing
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Figure 4: Comparison of Message Processing Time between
a Real PLC and virtual PLC using upload and download net-
work dumps

complexity differs based on the nature of the operation performed
while capturing the network dump.

Our findings, depicted in Figure 6, reveal that while the vPLC
takes slightly more time to process a request compared to a real
PLC, the delay is acceptable. Specifically, a real M221 PLC processes
a request message in an average of 0.0038 seconds. Meanwhile,
the vPLC takes an average of 0.0044 seconds to process a request
message given a network dump of an upload operation and 0.0092
seconds given a network dump of a download operation. These
results confirm our assumption that the vPLC processes requests
faster when the network dump’s operation matches the current
operation. Although there is a slight delay with the vPLC, we ob-
served no connection timeouts or interruptions during our tests.
Therefore, these findings demonstrate that the vPLC is capable of
efficiently replaying network traffic to effectively impersonate a
real PLC.

7 CASE STUDY: INVESTIGATING IIOT
ATTACKS USING VPLC

The IIoT realm is evolving rapidly, with emerging sophisticated
cyber-physical system threats like Denial of Engineering Opera-
tions (DEO) attacks [25]. These attacks compromise a PLC’s remote
maintenance capabilities, as evidenced on an Allen-Bradley Mi-
croLogix 1400-B via RSlogix 500 engineering software.

In the DEO I attacks, as illustrated in figure 5, an attacker sets
up a ’man-in-the-middle’ interception between the PLC and the en-
gineering software. When a control engineer attempts to download
control logic onto the PLC, the attacker captures this communica-
tion, altering the control logic that gets loaded onto the PLC. Later,
to hide this malicious intervention, when the control engineer tries
to view the control logic currently operating on the PLC, the at-
tacker steps in once more. They deceive the engineer by displaying
the original, benign version of the control logic. As a result, the
engineer remains unaware that a malicious control logic has been
running on the PLC throughout.

Attack Scenario: The system under attack is governed by a Mi-
crologix 1400 PLC, which is tasked with controlling a traffic signal
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Figure 5: Denial of Engineering Operations Attack (DEO I):
Concealing compromised ladder logic from the engineering
software

light. The PLC is remotely managed by the engineering software,
RSLogix, installed on a computer situated at the control center.
Through RSLogix, a user has the capability to not only monitor the
PLC’s activities but also exert control and make modifications to
the control logic running on the PLC from a remote location.

Attack Methodology: The assault is initiated when an attacker
successfully establishes a ’man-in-the-middle’ position between the
traffic signal-controlling Micrologix PLC and its associated engi-
neering software. This is achieved through ARP poisoning. Upon
the engineer’s attempt to download control logic to the PLC, the at-
tacker captures this communication, specifically targeting the timer
instruction responsible for controlling the green light’s duration.
With the use of an Ettercap filter [12], the preset value within this
timer instruction—essentially setting the green light’s wait time—is
maliciously adjusted, changing it from the standard 20 seconds to
an extended 40 seconds. To ensure the subterfuge remains unde-
tected, when the control logic is uploaded back from the PLC for
review, the attacker intercepts the data once more, restoring the
timer’s preset value to its original state. This cunning approach
ensures the corrupted control logic continues to run on the PLC,
while the engineer remains unsuspecting of any tampering.

Challenges in DEO Attack Forensics: Investigating DEO attacks
is a rigorous task, accompanied by several complexities. Even if
one manages to capture the network communication during the
onset of the attack, the deciphering process is intricate. The primary
evidence of a successful intrusion would be the malicious control
logic downloaded on the PLC. However, two primary challenges ob-
struct the seamless extraction of this control logic from the network
dump:

Protocol Obfuscation: Micrologix 1400 PLC utilizes the PCCC
protocol wrapped within the ENIP protocol. Given that these proto-
cols are binary and proprietary, it necessitates the reverse engineer-
ing of their structure and semantics. This task becomes formidable
without access to the original design documents or specialized tools.

Decompiling the Control Logic: The control logic, once com-
piled, is stored in a binary format – a non-human-readable form.
To understand its operations, it must be reverted to its source, typi-
cally in formats like ladder logic. This decompilation is challenging
because it demands an understanding of the precise compilation
process, which the engineering software undertakes. Hence, reverse
engineering the logic becomes imperative.

In light of these challenges, our approach leverages the vPLC
system to navigate and potentially overcome these barriers.

Malicious Control Logic

Original Control Logic

Figure 6: Control logics retrieved from the network dumps
of DEO I attack

Forensic Analysis of DEO I Attack:
To investigate the DEO I attack, we leveraged the capabilities of

vPLC. A crucial feature of the vPLC is its ability to replay captured
network traffic, which proved instrumental in our analysis. By
integrating the compiler present within the engineering software,
vPLC managed to effectively reconstruct the communication that
transpired during the attack. In doing so, vPLC bore the burden of
reverse engineering the proprietary ICS protocols.

This integration enabled us to recreate the communication stream
and replay it back to the engineering software. As a result, the vPLC
handled the intricacies of the ICS protocols, while the engineer-
ing software facilitated the decompilation of the machine-readable
control logic into a more comprehensible ladder logic form.

Following this process, we separated the communication streams,
discerned through MAC addresses, into two categories: from the
PLC to the attacker, and from the attacker to the engineering soft-
ware. We then replayed these streams individually on vPLC, con-
nected the engineering software, and uploaded the control logic.
This step transformed the previously obfuscated control logic into
a human-readable format, as evidenced in figure 6.

The outcome of our forensic approach underscored vPLC’s indis-
pensable role in dissecting complex IIoT cyber-attacks. Not only did
the replay function of vPLC provide a window into the attacker’s
methods, but it also paved the way for the development of potential
countermeasures.

8 CONCLUSION
The increasing prevalence of the Industrial Internet of Things (IIoT)
has created an urgent need for scalable testbeds. In this paper, we
introduce the virtual Programmable Logic Controller (vPLC) as a
solution. Through its software-based approach, the vPLC is capable
of creating multiple virtual PLC instances, simulating extensive
IIoT networks.

At its core, the vPLC uses a network replay mechanism, enabling
it to mimic real PLCs by replaying network dumps captured from



vPLC: A scalable PLC testbed for IIoT security research ICSS’23, Dec 05, 2023, Austin, TX

these devices. It learns the structure of session-dependent fields and
messages from the network traffic, enhancing its replay accuracy.

We validated the vPLC using three different PLCs and demon-
strated its capability to effectively impersonate real PLC operations.
Additionally, we illustrated how the vPLC can aid IIoT research, par-
ticularly in the forensic analysis of cyberattacks on IIoT networks,
highlighting its potential to advance cybersecurity research.

In conclusion, the vPLC provides a scalable and versatile platform
for IIoT research, driving the development of stronger security
measures in this expanding field.
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