

Security Hardening of Industrial Control Systems through Attribute Based Access Control

Shwetha Gowdanakatte, Mahmoud Abdelgawad, and Indrakshi Ray

Ninth Annual Industrial Control System Security (ICSS) Workshop October 2023 Austin, Texas, USA

Outline

Introduction

- Background
 - PLC and their Security Vulnerabilities
 - NIST NGAC for PLC
- Attack demonstration
 - Attack Model
 - DoS Attack on the PLC
- Security Hardening
 - ABAC Gateway
 - Testbed
 - Prevention of DoS Attack with ABAC Gateway
- Formal Verification
 - Use Case 1: PLC without ABAC Gateway
 - Use Case 2: PLC with ABAC Gateway
- Formal Analysis
- Conclusion & Future work

Industrial Control Systems (ICS)

Background: PLC and their Security Vulnerabilities

- Programmable Logic Controllers
 - Rockwell Compact Logix
 - Engineering Framework: Studio 5000
 - Communication Protocol: Common Industrial Protocol (CIP)
 - □ Siemens S7-1500
 - Engineering Framework: Totally Integrated Automation (TIA) portal
 - Communication Protocol: S7-P3
- Recent Vulnerabilities
 - CVE-2021-1392: Obtain a CIP password and add an authorized admin user
 - CVE-2021-22681: Bypass authentication to impersonate Studio 5000
 - □ CVE-2016-9342 and CVE -2021-37185: Crafted TCP packets to the PLC

Background: NIST NGAC for PLC

Attribute-Based Access Control for PLC: Gowdanakatte et al. [1]

[1] Shwetha Gowdanakatte, Indrakshi Ray, and Siv Hilde Houmb. 2022. Attribute Based Access Control Model for Protecting Programmable Logic Controllers. In Proceedings of the ACM Workshop on Secure and Trustworthy Cyber-Physical Systems (CODASPY). ACM, Baltimore, MD, USA, 47–56.

12/8/23

5

Background: Policy Formalization

Each policy is expressed as a tuple <{User Attribute}, {Resource Attribute}, {Environmental Attribute}, {operation}>

- User Attributes
 - □ Access Level = {Operator, Engineer, Administrator}
 - Device ID
- Resource (PLC) Attributes
 - Module = {Software, Firmware, Communication, Memory}
 - □ Status= {Stopped, Running, Emergency Stop Active}
 - Operating Mode = {Program, Test, Error, Remote}
 - Port
- Environmental Attributes
 - User Access Time
 - User Access Location
- **Example Policy: Communication Setup**
 - <{(User.AccessLevel \epsilon {Operator, Engineer, Administrator), (User.Device = "Equip 21L OrgABC")}, {(PLC.OperatingMode = Remote)}, {(Env. Access Time = 700 - 16 : 00EST), (Env. Access Loc = OrgABC.local")}, {CommSetup}>

Departure Phase-1: Man-in-the-Middle (MITM) Attack

Phase-2: Denial of Service (DoS) Attack

Attack Demonstration

Attack Setup

Phase 1: Man-in-the-Middle Attack

Attack Demonstration

Phase 2: DoS Attack

(0000) 6f 00 26 00 da 03 03 00 00 00 00 00 5f 70 79 63 (0010) 6f 6d 6d 5f 00 00 00 00 00 00 00 00 00 00 02 00 (0020) 00 00 00 b2 00 16 00 52 02 20 06 24 01 0a 05 (0030) 08 00 0e 03 20 01 24 01 30 90 01 00 01 01 •••••\$•0••••

Result

- Recoverable major fault on the PLC
- Stopping the running process
- Unavailability of PLC for further online requests
- Caused DoS attack
- Resolution
 - Manual restarting of the PLC through a power cycle
 - Clear major fault

ABAC Gateway

12/8/23

11

Test Bed

■ NGAC-ABAC Implementation on Raspberry Pi3

- Python Vakt library
- **E** Example Policy

```
actions=[Eq('CommSetup')],
subjects=[{'User.AccessLevel' : In('Operator', 'Engineer', 'Administrator'),
            'User.Device' : Eq("Equip21LOrgABC")}],
context={'Env.AccessTime' : And(GreaterOrEqual(7.00), LessOrEqual(16.00)),
            'Env.AccessLoc' : Eq("OrgABC.local"),
            'PLC.OperatingMode' : Eq('Remote')},
resources=[Eq('PLC')],
effect=vakt.ALLOW ACCESS
```

Test Bed

Crafted TCP Packet

(0000) 6f 00 26 00 da 03 03 00 00 00 00 00 5f 70 79 63 (0010) 6f 6d 6d 5f 00 00 00 00 00 00 00 00 00 00 02 00 (0020) 00 00 00 b2 00 16 00 52 02 20 06 24 01 0a 05 (0030) 08 00 0e 03 20 01 24 01 30 90 01 00 01 01 ••••••\$•0•••••

- Device ID of Engineering Workstation: 'velpi'
- Allowed device ID for establishing the communication with Compact Logix: 'Equip21LOrgABC'

Communication Request Packet

e4	90	69	a4	3f	16	b8	27	eb	ab	9f	2c	08	00	45	00	i.?'
00	44	79	5c	40	00	40	06	28	f7	c0	a8	Øb	dd	c 0	a8	.Dy\@.@.
0b	33	82	40	af	12	87	38	12	90	32	9b	69	6c	50	18	.3.@8
01	f6	98	97	00	00	65	00	04	00	00	00	00	00	00	00	e.
00	00	5f	70	79	63	6Ť	6đ	6d	5f	00	00	00	00	01	00	pycom
00	00															

...,..E. (..... ..2.ilP. m

Policy Verification for 'Register Session' Request

DoS attack prevented based on invalid device ID

Verification: PLC Operates without ABAC Gateway

- CPN Block Diagram
- Three CPNs:
 - User, Network, and PLC
- 1. User sends a request packet to initialize communication with PLC
- 2. The PLC receives the request and replies with a challenge question
- 3. The user sends the challenge response.
- 4. The PLC confirms that the session is *OK* to be established.
- 5. The user sends a command to PLC to be executed.
- 6. The PLC executes the command and confirms the user with PLC status

Verification: PLC Operates without ABAC Gateway

CPN Demo: TCP Packets traveling between User and PLC through Network

Verification: PLC Operates without ABAC Gateway

Testcases: CPN Tokens demonstrate legal access (first 3 tokens) and attacks (last 2 tokens)

TC#	Description	Input (Token)	Expected Output	Actual Output	Testcase Status
1	ADMIN: A legal user listed in DAC-ACL and has privilege to setup PLC communication	<pre>{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command = Comm.Setup, SessionHandle = "established"}}</pre>	PLC Status Running	PLC Status Running	Passed
2	ADMIN: A legal user listed in DAC-ACL privilege to stop PLC communication	<pre>{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	PLC Status Stopped	Passed
3	USER: A legal user listed in DAC- ACL but does not have privilege to stop PLC communication	<pre>{IP = {srcIPAddr = "10.255.10.23", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	TCP Packet Rejected	Failed
4	ATTACKER-1: An attacker imper- sonates USER to stop PLC commu- nication	<pre>{IP = {srcIPAddr = "13.255.255.1", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	TCP Packet Rejected	Failed
5	ATTACKER-2: An attacker imper- sonates ADMIN to setup PLC com- munication	<pre>{IP = {srcIPAddr = "13.255.255.3", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	PLC Status Stopped	Passed

- TC#4: ATTACKER-1 impersonates USER and obtained the same access discretion, but DAC blocked its TCP request packet. (Testcase failed)
- TC#5: ATTACKER-2 impersonates ADMIN, gained its discretion, and stopped the PLC. (Testcase passed)

Verification: PLC Operates with ABAC Gateway

- CPN Block Diagram: Four CPNs (User, Network, ABAC Gateway, and PLC)
- ABAC Gateway: contains three sub CPN blocks: Authentication Module, Comm. Handler, and Access Control Module (NGAC)
- Any TCP Packet sent from User to PLC must go through the ABAC Gateway

Verification: PLC Operates with ABAC Gateway

CPN Demo: TCP Packets traveling between User and PLC through Network and ABAC Gateway

Verification: PLC Operates with ABAC Gateway

Testcases: CPN Tokens demonstrate legal access (first 3 tokens) and attacks (last 3 tokens)

TC#	Description	Input (Token)	Expected Output	Actual Output	Testcase Status
1	ADMIN: a legal user assigned in NGAC Comm.Setup policy	<pre>{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", UserID = "ADMIN-01", EncPWD = "PWD123", DeviceID = "SR123", AccessTime = "13:10EST", CIP = {Command = Comm.Setup, SessionHandle = "established"}}</pre>	PLC Status Running	PLC Status Running	Passed
2	ADMIN: a legal user assigned in NGAC Comm.Stop policy	<pre>{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", UserID = "ADMIN-01", EncPWD = "PWD123", DeviceID = "SR123", AccessTime = "13:15EST", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	PLC Status Stopped	Passed
3	USER: a legal user has not as- signed in NGAC Comm.Setup policy	<pre>{IP = {srcIPAddr = "10.255.10.23", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", UserID = "USER-01", EncPWD = "PWD567", DeviceID = "SR567", AccessTime = "13:25EST", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	Access Denied & User Disconnected	Failed
4	ATTACKER-1: an attacker im- personates USER to stop PLC communication	<pre>{IP = {srcIPAddr = "13.255.255.1", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", UserID = "USER-01", EncPWD = "PWD567", DeviceID = "SR999", AccessTime = "13:35EST", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	Authentication fails & User Disconnected	Failed
5	ATTACKER-1: an attacker im- personates USER to stop PLC communication	<pre>{IP = {srcIPAddr = "13.255.255.1", dstIPAddr = "129.10.1.3"}, TCP = {srcPort = "5357", dstPort = "44818", UserID = "USER-01", EncPWD = "PWD567", DeviceID = "SR567", AccessTime = "13:40EST", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	Access Denied & User Disconnected	Failed
6	ATTACKER-2: an attacker im- personates ADMIN to setup PLC communication	<pre>{IP = {srcIPAddr = "13.255.255.3", TCP = {srcPort = "5357", dstPort = "44818", UserID = "ADMIN-01", EncPWD = "PWD123", DeviceID = "SR123", AccessTime = "13:45EST", CIP = {Command = Comm.Stop, SessionHandle = "established"}}</pre>	PLC Status Stopped	Access denied & User Disconnected	Failed

• TC#6: ATTACKER-2 impersonates ADMIN, sends setup command, but it is denied by the ABAC Gateway. (Testcase failed)

Formal Analysis

Sta	te Space	SC	C Graph	Status	
#State	#State #Transition 1820 5733		#Transition	Full	
1820			5733		
Ho	me State	De	ead State	#Dead Transitions	
	[1653]	[13	578,1745]	2	

State-Space Analysis for Use Case 1

Sta	te Space		SCC Graph	Status		
#State #Transition		#State	#Transition	Full		
4876 18057		4876	18057	run		
			Dead State			
Но	me State	[722,72	3,3156,3157,3158,3159,	#Dead Transitions		
	[683]	3160,310	61,3162,3163,3164,3165,	27		
			3166,3167]			

State-Space Analysis for Use Case 2

- State Space- Total number of states and transitions during the communication between the user and the PLC
- Strongly Connected Graphs (SCC)- Verifies the correctness of the model
- Dead State Represent the state at which the communication is terminated between the user and the PLC

Conclusion

- It may be impossible to patch all the vulnerabilities of ICS.
- The solution is to protect against authentication vulnerabilities in PLC
- We developed NIST NGAC Attribute-Based Access Control for PLC protection.
- We built a testbed to demonstrate the ABAC Gateway
- Formal Verification is executed to verify the PLC system in Use Cases
 - 1) PLC operates without ABAC Gateway
 - 2) PLC operates with ABAC Gateway
- Result shows ABAC Gateway effectively hardens the PLC security

Future Work

- Currently, we are investigating the use of NIST NGAC for the security hardening of other devices in an ICS environment.
- Next, we will analyze the latency, performance, and throughput of the ICS due to the incorporation of the ABAC module

Acknowledgement

- NSF
- NIST
- Cyber Risk Research
- Statnett
- AMI
- ARL
- New Push

Thank you!

Questions?

25