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ABSTRACT
In both military and civilian sectors, Medium and Heavy Duty
(MHD) vehicles form a critical part of infrastructure, logistics, and
operations. Modern MHD vehicles are equipped with embedded
computers that heavily rely on sensor data for maintaining opera-
tions. This data is often exchanged using standard protocols. The
Society of Automotive Engineering’s (SAE) J1939 Protocol on top
of the Controller Area Network (CAN) is the common standard
for data exchange in modern MHD vehicles. The resilience of this
communication network is pivotal for the operational feasibility
of MHD vehicles, especially in hostile environments where sen-
sors may be compromised as a result of cyber attacks or kinetic
malfunctions. This paper proposes the use of predictive machine
learning algorithms to forecast accurate sensor readings when a
sensor system becomes unavailable, whether due to physical or
cyber-attacks. Utilizing real-world data from a Class 6 Kenworth
T270 truck as a case study, we explore and evaluate the effectiveness
of three different machine-learning methods in predicting missing
sensor data. Our findings indicate that the machine learning models
are capable of nearly accurate predictions, which can prevent the
vehicle from entering into engine protection or limp mode. This
not only maintains the vehicle’s operational status for extended pe-
riods but also contributes to enhancing the resilience of networked
cyber-physical systems.

KEYWORDS
Resilient systems, Fault Tolerance, Heavy vehicle systems, SAE
J1939 networking architectures, Predictive algorithms, Networked
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1 INTRODUCTION
Medium and Heavy Duty (MHD) vehicles are a part of critical
modern infrastructure serving as the backbone of various com-
mercial and governmental activities. Modern MHD vehicles are
equipped with multiple embedded computers or Electronic Con-
troller Units (ECUs) which control most functions. These ECUs are
increasingly reliant on complex sensor systems for maintaining
operations through the exchange of sensor data over communica-
tion lines. In the US the standard choice of communication among
ECUs is the Society of Automotive Engineering’s (SAE) J1939 [18]
based on the Controller Area Networks (CAN) [3] protocol. While
these standard communication protocols offer remarkable fault

tolerance, they fall short in risk mitigation strategies, particularly
when sensor systems malfunction or when the sensor system faces
a cyber-attack. In such scenarios compromised sensor data could
render a vehicle non-operational—forcing it into a ‘limp mode’ or
causing a complete shutdown.

Traditional fault-tolerancemechanisms have limitations in adapt-
ability and predictive accuracy. They often require manual updates
or intervention and can not adapt to new types of sensor failures
or cyber threats in real time. Machine learning offers a dynamic,
automated alternative. Specifically, machine learning models can
be trained to recognize complex patterns in sensor data, predict
future values, and detect anomalies, making them uniquely suited
to the problem of ensuring resilience in MHD vehicles.

Against this backdrop, the central research question we explore
is: Can a single, generalized machine learning model deliver real-time,
robust predictions for compromised or missing sensor values in MHD
vehicles?

The overarching goal of this study is to develop a machine
learning-based solution that serves as a resilient countermeasure to
sensor malfunctions in MHD vehicles. The ambition is to construct
a unified neural network model that is both robust and adaptable
across various real-world operational scenarios. A unique aspect
of this approach is the use of a single generalized neural network
model that is trained on diverse sensor data. This not only ensures
broader applicability but also reduces the system’s complexity by
eliminating the need to design separate neural networks for each
sensor type. To validate our approach, we conduct experiments us-
ing three machine learning algorithms chosen for their theoretical
merits: Dense Binary Transformer (DBT) [11, 24], Sparse Binary
Transformer (SBT) [7], and Long Short-Term Memory (LSTM) [8].
Each algorithm was selected for its unique advantages in deal-
ing with time-series data, computational efficiency, and predictive
accuracy. These attributes are subjected to empirical validation
through a series of experiments. Initial analysis suggests that the
DBT model consistently outperforms its counterparts in a major-
ity of scenarios. However, it is worth noting that LSTM and SBT
models also demonstrated commendable efficacy, trailing not far
behind, thereby underlining the promise of machine learning ap-
proaches in enhancing MHD vehicle robustness. Our experiments
yielded promising results, suggesting that machine learning can
indeed provide robust, real-time solutions for the complex problem
of sensor malfunction in MHD vehicles.
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Through this comprehensive examination, our research demon-
strates the feasibility of a robust machine-learning framework that
can substantially enhance the resilience and adaptability of sen-
sor systems in MHD vehicles. This is a critical advancement in
mitigating the risks associated with mechanical failures and cy-
ber vulnerabilities in the increasingly interconnected and digital
landscape of modern vehicular technologies.

To elaborate on these aspects, the remainder of this paper is
structured into key sections. Section 2 provides background on
MHD vehicle communication protocols and presents related work.
Section 3 explains the unified machine learning model we pro-
pose, detailing its advantages and unique contributions. This is
followed by section 4 which outlines our experimentation design
and the resultant observations, thereby highlighting the strengths
and weaknesses of each algorithm in the given application context.
This is followed by section 5 which summarizes the findings of our
experiments. The paper concludes with a discussion of the broader
implications, limitations, and avenues for future research.

2 BACKGROUND
In this section, we will provide an overview of the message format
employed in the widely used SAE J1939 protocol for data commu-
nication among Electronic Control Units (ECUs) in heavy vehicles
as well as discuss the research that has been done previously.

SAE J1939 protocol is a high-level protocol that is used for com-
munication among Electronic Control Units (ECUs) in Medium and
Heavy Duty (MHD) vehicles. Utilizing the Controller Area Network
(CAN) bus [3], it supports the transmission of Protocol Data Units
(PDUs) as the primary message packets. Each PDU is composed of
a 29-bit extended identifier field and a data field that accommodates
0 to 64 bytes of data. This identifier contains multiple subfields like
Priority, Extended Data Page (EDP), Data Page (DP), PDU Format
(PF), PDU Specific (PS), Source Address (SA), and Destination Ad-
dress (DA), which collectively provide the contextual layer for the
encapsulated data. A special aspect is the Parameter Group Num-
ber (PGN), which is formed by combining the PF and PS fields and
serves as a unique identifier for the type of data in the PDU. The data
field, in turn, contains Suspect Parameter Numbers (SPNs), which
represent various types of sensor readings [18]. For the purpose of
this paper, SPN and sensor data will be used interchangeably.

Security challenges in vehicular networks have beenwell-studied.
Initial findings have shown vulnerabilities in CAN protocols that
passenger vehicles use [2]. Attacks like message injection and
even remote exploitation have been identified [6, 9, 23]. Addition-
ally, attacks on sensor systems have also increased over the years
[10, 16, 17]. Similar vulnerabilities have also been found to exist in
MHD vehicles [15, 22], accentuated by the fact that J1939 specifi-
cations are publicly available, posing an increased risk of targeted
attacks [4, 5, 12–14].

Countermeasures proposed include intrusion detection systems
and cryptographic solutions [15, 22]. However, cryptographic so-
lutions may be too resource-intensive for practical use in MHD
vehicles [1].

Machine learning has emerged as a promising approach for mit-
igating these vulnerabilities. Shirazi et al. successfully utilized ma-
chine learning models to reconstruct compromised sensor data [19,

20]. They primarily employed Long Short-Term Memory (LSTM)
autoencoders, suggesting that compromised or missing values can
be accurately replaced by using other available sensor readings.
However, their methodology requires a distinct neural network for
each sensor, which may not be practical in a resource-constrained
environment [19].

Previous efforts have shown promise but are limited by their
need for multiple neural networks to predict specific sensor val-
ues. Our work seeks to surmount this limitation by proposing a
unified approach. Employing a single neural network model, we
aim to provide a robust solution that can predict any missing or
compromised sensor data with high accuracy.

3 PROPOSED APPROACH
In this section, we discuss the different methods we used for our
experiments, the reason for using these methods, and the special
features of these methods that will be beneficial for our goals.

Our primary goal is to develop a unified neural network model
capable of predicting one or multiple missing or compromised sen-
sor values in real-time in MHD vehicles. This centralized approach
aims to enhance the system’s robustness and adaptability.

We are looking for the following factors for our research.

• Generalization: By employing a single generalized network
trained on a diverse sensor dataset, our approach offers broad
applicability. This eliminates the constraints of designing
separate networks for each sensor or requiring a fixed sensor
configuration.

• Real-time Prediction: The generalized model is designed
to deliver real-time predictions. This ensures the smooth
operation of other sensors and systems that are dependent
on the missing or compromised sensor data.

• Reduced System Complexity: Using one model for all
sensors simplifies the system architecture, reducing points
of failure and the computational overhead of managing mul-
tiple models.

Dense Binary Transformer (DBT) The Dense Binary Trans-
former (DBT) serves as an advanced variant of the well-
established Transformer model, which is an architecture
originally designed for natural language processing tasks.
The Transformer architecture consists of two primary com-
ponents: an encoder and a decoder. These are responsible
for transforming the input data into a format that can be
utilized for tasks like classification or prediction. A notewor-
thy feature of the Transformer model is the self-attention
mechanism, which allows the model to weigh different parts
of the input data based on their relevance to the task at hand.
DBT employs a specialized form of the self-attention mecha-
nism known as ProbSparse Self-Attention. Unlike traditional
self-attention, which involves each input unit (commonly re-
ferred to as a ‘key’) interacting with all other units (referred
to as ‘queries’), the ProbSparse mechanism limits these inter-
actions. Specifically, each key is permitted to interact only
with a subset of queries, effectively reducing computational
time and memory usage. This is particularly advantageous
when the model has to handle large and complex datasets.
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Window
Size

Training with all data Training with 5% of missing data
DBT SBT LSTM DBT SBT LSTM

10 0.2446 0.5901 0.4810 0.2432 0.4969 0.4952
50 0.2767 0.6391 0.5710 0.2661 0.5886 0.6721
100 0.3174 0.6784 0.6312 0.2638 0.6453 0.7611
200 0.4850 0.7537 0.7005 0.4209 0.6892 0.9023

Table 1: Mean Squared Error on Test Data

In the context of machine learning, an encoder is a compo-
nent of a neural network responsible for transforming raw
input data into a condensed, machine-interpretable form.
DBT optimizes the conventional Transformer encoder for
increased efficiency in processing long sequences of data. To
achieve this, it integrates Convolutional 1D layers—which
are generally employed for spatial feature extraction in im-
age data—and MaxPooling layers that reduce data dimen-
sions while preserving essential features. These layers work
in tandem with traditional self-attention blocks to extract
vital features from large datasets.DBT is specially engineered
to capture intricate patterns in large and complex data struc-
tures, making it highly effective for tasks requiring predictive
accuracy. In particular, it excels in real-time sensor value
prediction. The architecture of DBT is tailored to optimize
both computational efficiency and the capability to recog-
nize complex patterns, positioning it as an ideal choice for
performance-critical applications.

Sparse Binary Transformer (SBT) The Sparse Binary Trans-
former (SBT) is another derivative of the Transformer model,
which, similar to DBT, addresses specific challenges in com-
putational efficiency and scalability. As discussed under DBT,
the Transformer architecture is bifurcated into an encoder
and a decoder, with self-attention mechanisms playing a cru-
cial role in data transformation and task-specific learning.
SBT distinguishes itself by adopting an even more compu-
tationally efficient self-attention mechanism. The mecha-
nism is optimized to reduce the amount of computational
resources required for processing, making it suitable for
applications that need real-time response, such as sensor
value prediction. The encoder in SBT is engineered to min-
imize memory usage and computational time. It employs
a selection of specialized layers designed to reduce the di-
mensionality of the input data effectively while maintaining
essential features. The layers include variants of traditional
self-attention blocks but are optimized to be computationally
less demanding. The SBT model is ideal for scenarios that
require real-time sensor value prediction. Its architecture
focuses on achieving high predictive performance while be-
ing computationally efficient, a crucial factor for ensuring
optimal system performance in real-time applications.

Long Short-Term Memory (LSTM) Long Short-Term Mem-
ory (LSTM) is a type of Recurrent Neural Network (RNN)
architecture, specifically designed for sequence prediction
problems. RNNs are neural networks where connections
between nodes form a directed graph along a temporal se-
quence. This allows them to maintain a ‘memory’ of previous

inputs, making them well-suited for tasks involving sequen-
tial data, such as time series prediction. LSTM networks
include memory cells that allow them to store and recall
information over long sequences effectively. Unlike stan-
dard RNNs, which often suffer from the ‘vanishing gradient’
problem, LSTMs are capable of learning long-term dependen-
cies in the data. The LSTM architecture described employs
a two-stage process—an encoder that processes the input
sequence and captures its information in a ‘context vector’,
and a decoder that generates the output sequence based on
this context vector. The architecture includes special layers
like ‘RepeatVector’ for replicating the context vector and
‘TimeDistributed’ for generating the output sequence. LSTM
is particularly advantageous for making inferences from
sensor data that exhibit temporal correlations. It is adept
at capturing long-range dependencies in time-series data,
making it a potentially effective algorithm for applications
that require high predictive accuracy over extended periods.

The selection criteria for these models stem from their respective
theoretical advantages in both predictive accuracy and computa-
tional efficiency, which will be empirically validated through a
battery of experiments designed to rigorously evaluate their per-
formance under various real-world conditions.

4 EXPERIMENTS AND RESULTS
In this section, we discuss how we prepared the data for our exper-
iments, our testing methodology, and the results from our different
experiments.

4.1 Data Preparation
We collected data from a 2014 Kenworth T270 research truck dur-
ing a 2018 cross-country trip from Fort Collins to Detroit [21]. The
data, initially in ‘candump’ format, consisted of time-stamped ASCII
values with CAN identifiers and data fields. Using the SAE-J1939
standard, we isolated relevant PGNs and decoded them to actual
engineering values. Out of all the sensor values on the CANbus, 52
sensors had non-static, measured values that can affect the training
and testing process positively, contributing to predicting missing
sensor values effectively. We used these 52 SPNs for our exper-
iments. To address different periodicities in CAN messages, we
sampled the most recent sensor data at 500 millisecond intervals,
creating a time-series dataset. The dataset was then normalized to
scale the values between 0 and 1 for training and testing.

Our experiments revolved around optimizing the performance of
the algorithms we used. We extensively evaluated these algorithms
by training them under varied data conditions, specifically focusing
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Figure 1: Error comparison at 4 different values of k, where k represents the number of missing SPNs

on the impact of missing values – a practical challenge in real-world
scenarios. For quantifying the accuracy of the results during testing,
the Average Percentage Error (𝑒𝑟𝑟 ) served as our metric, computed
as:

𝑒𝑟𝑟 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑒𝑖 |
𝑧

× 100, (1)

where |𝑒𝑖 | represents the absolute error between actual and pre-
dicted values for a data point, 𝑧 is the SPN’s range, and 𝑛 encapsu-
lates all dataset points for the specific SPN. This error measurement
provided a normalized perspective across varied SPNs and their
distinct ranges. The experiments were bifurcated into two main
training strategies to emulate both ideal and realistic situations. We
adopted two distinct training strategies to better understand model
performance under different data conditions:
Full-data Training. In this approach, we trained our models using
the complete dataset, ensuring that all original values from the
sensors were incorporated. This served as our baseline to evaluate

the maximum potential performance of the models when given
access to all available data.
Training with Missing Values. Recognizing that in real-world
scenarios, sensor data might be sporadically unavailable due to
outages or malfunctions, we introduced a second training strategy.
Here, we artificially inducedmissing values in the training dataset to
simulate the scenario of sensors being unavailable during training.
This was done to ascertain how well the models can learn and
generalize in the face of incomplete data.

The dataset, comprising 16,000 instances, is divided into training
and testing sets with proportions of 75% and 25%, respectively. Both
transformer models are trained for 100 epochs using an NVIDIA
TITAN V with 12GB of memory.

Table 1 displays the mean squared error (MSE) calculated using
two distinct training approaches across various window sizes. The
MSE values indicate that all DBT, SBT, and LSTM perform opti-
mally when the window size is set to 10, suggesting that larger
window sizes do not significantly affect performance. Additionally,
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the results demonstrate that training models on missing data enable
them to learn missing data behavior effectively.

A randomized model search algorithm is employed to find the
best hyperparameters for the models, DBT, SBT, and LSTM. A num-
ber of hyperparameters are searched, including optimizer, learning
rate, batch size, and layer/batch normalization. Following are the
architectural details of the best-searched models. Interestingly, best-
performing architectures were found to be similar in both DBT and
SBT:

• Positional encoding size of 64 units: This specifies the
size of the positional encoding vector, which helps the model
understand the order of the data.

• Four encoder layers: The encoder processes the input data
and converts it into a form that the decoder can understand.
Four layers were found to be optimal for this.

• Four self-attention heads in each encoder layer: These
are used to focus on different parts of the input sequence
when processing it, essentially allowing the model to pay
‘attention’ to different aspects of the data.

• Hidden layers with the size of 128 units: This is the num-
ber of neurons in the hidden layers of the neural network,
crucial for the learning process.

For LSTM, the best-performing architecture consisted of:

• Input layer with shape of (𝑛past, 𝑛features): The input
layer is where the network starts, it takes in an input shape
corresponding to the number of past observations and fea-
tures in each observation.

• First encoder LSTM layer with node units, returning
sequences and states: The first LSTM layer processes the
input data and returns not just the final output, but also an
internal state for each step in the input sequence.

• Second encoder LSTM layer with node units, return-
ing states: This second LSTM layer processes the sequence
further and returns the internal state.

• A RepeatVector layer: This layer duplicates the final out-
put of the encoder, effectively focusing the decoder’s atten-
tion on the most important parts of the input sequence.

• First and Second decoder LSTM layers: These layers are
responsible for generating the output sequence, using the
internal states returned by the encoder layers for initializa-
tion.

• TimeDistributed wrapper around a Dense layer with
𝑛features units for output: This distributes the dense layer
for each time step in the output sequence, essentially creating
one dense layer per time step.

4.2 Single model to predict all SPNs with one or
more missing SPNs at a time

In this subsection, we evaluate the performance of different predic-
tive models including LSTM, SBT, and DBT in predicting sensor
values under various test cases.

4.2.1 Test Case 1: Missing one or more SPNs. The performance of
the prediction models varied based on the chosen algorithm, the
nature of the training data (whether it was original or had simulated

missing values), and the specific SPN being predicted. The dispar-
ities in results across different SPNs underscore the importance
of algorithm selection and understanding the nuances of training
data.

In this case, all of these data points are missing simultaneously,
along with all their previous values within a given window. Figure
1 demonstrates our first test case where 𝑘 SPNs are missing. For
every 𝑘 value, 𝑘−1 SPNs are randomly chosen from a set of 51 SPNs,
and the 𝑘𝑡ℎ SPN is the one being predicted. The plot reveals that
the prediction error for LSTM is consistently the highest among
the three methods for all examined values of 𝑘 . Conversely, DBT
demonstrates the lowest error overall, suggesting that LSTM re-
quires the most SPN values to make accurate predictions, whereas
transformer models can learn from key features. It is also note-
worthy that increasing the value of 𝑘 does not notably affect the
average error for most SPNs.

4.2.2 Test Case 2: Missing SPN as well as its correlated SPNs. Cor-
related SPNs are identified using Pearson Correlation having a
correlation value greater than 0.5. Figure 2 illustrates the compari-
son of performances among LSTM, SBT, and DBT, all with a window
size of 10. Error is highest when SPNs correlated to target SPN are
missing which indicates that the transformer model is able to learn
the underlying dependence between practically related SPNs. How-
ever, the LSTM model exhibits the lowest error among all methods.
That rationale is understandable, as LSTM models tend to focus on
learning past temporal patterns rather than inter-sensor dependen-
cies. In conclusion, the outcomes indicate that both transformer
and LSTM models possess their own distinct advantages.

Figure 3 shows the average prediction error of DBT for each SPN
on both test cases: one with 1, 3, 5, and 7 randomly selected missing
SPNs, and the other with missing correlated SPNs from the test
data. Figure 3 validates our previous findings that as the number of
missing SPNs increases, average prediction error also increases, but
not significantly. Error is highest when SPNs correlated to target
SPN are missing which indicates that the transformer model is able
to learn the underlying dependence between practically related
SPNs.

4.3 Single model to predict multiple future
steps for one SPN missing at a time

To continue our experiments, we tried to observe how the algo-
rithms performed when trying to predict more than one missing
value in the future. For this purpose, we performed several more
sets of experiments with each of the algorithms and compared their
results.

In evaluating the efficacy of the three machine learning algo-
rithms for predicting missing SPN values for more than one step
in the future, we conducted two types of experiments on each
algorithm for n steps in future prediction.

4.3.1 Test Case 1: One-shot Method. The ‘one-shot’ prediction
method aims to forecast the value of the missing sensor at a specific
future time step n directly. In this method, the model is trained to
take the values of the remaining 50 sensors as input and output the
value of the missing sensor exactly at the time step n.
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Figure 2: Error comparison between proposed approaches when correlated SPNs are missing

Figure 3: Average prediction error of DBT per SPN
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Model Average Errors for n-steps in future prediction (in %)
1 3 5 10 15 20 25 50 100

DBT 4.90 4.45 4.86 5.20 5.41 5.36 7.35 9.43 11.88
SBT 6.90 6.78 6.81 7.31 7.19 7.67 8.62 10.93 14.22
LSTM 5.66 5.45 5.56 5.86 5.93 7.62 9.32 12.93 15.86

Table 2: Average Errors for n-steps in future prediction (in %) for One-shot Method

Model Average Errors for n-steps in future prediction (in %)
1 3 5 10 15 20 25 50 100

DBT 4.90 3.73 3.55 4.01 4.66 4.70 6.04 8.18 10.33
SBT 6.90 5.97 5.40 6.05 5.91 6.27 7.04 9.55 13.17
LSTM 5.66 4.21 4.79 4.34 4.57 6.11 8.13 11.50 14.31

Table 3: Average Errors for n-steps in future prediction (in %) for Recursive Feeding Method

One of its key advantages is computational efficiency. The model
directly predicts the missing sensor value at the n-th future time
step, thereby bypassing the need to calculate any intermediate val-
ues. This often results in faster prediction times. Additionally, this
method minimizes the risk of error propagation that can occur
when forecasts are built upon previous forecasts, offering poten-
tially more accurate results for the specific future time step of
interest.

In the One-shot Method, we evaluated the prediction errors of
DBT, SBT, and LSTM for various future time steps ranging from
1 to 100. As observed in Table 2, DBT consistently demonstrates
the lowest prediction errors across most future steps, highlighting
its efficiency and accuracy in this approach. On the other hand,
LSTM and SBT errors are relatively higher, particularly as the fu-
ture time step increases. Specifically, LSTM exhibits the highest
errors for long-term predictions at steps 50 and 100. These findings
further solidify the One-shot Method’s advantage in computational
efficiency, while also emphasizing the model-specific trade-offs in
prediction accuracy.

4.3.2 Test Case 2: Recursive Feeding Method. In the recursive feed-
ing method, the model initially predicts the missing sensor value
one step ahead (i.e., n=1). This predicted value is then fed back into
the model along with the other 50 sensor values to predict the value
for the next step. This process is recursively repeated to generate
a prediction for the missing sensor at the desired n-th step in the
future.

The Recursive Feeding Method brings its own set of merits,
notably its simplicity and flexibility. A single model can be used
to generate predictions for multiple future steps, making it easier
to manage and potentially less computationally expensive to train.
Moreover, this approach provides intermediate forecasts for all
steps leading up to the target n-th step. This can be particularly
valuable when the intermediate states are of interest or when one
wishes to understand the progression of sensor values over time.

In the Recursive Feeding Method, we assess the errors associated
with DBT, SBT, and LSTM across a range of future time steps,
from 1 to 100. As shown in Table 3, DBT again fares the best,
with comparatively lower prediction errors at almost all future

steps. LSTM, however, displays a notable improvement over its One-
shot counterpart, especially at short-to-medium future steps. SBT
remains consistently higher in error but shows some improvement
in long-term predictions. The advantage of the Recursive Feeding
Method lies in its flexibility to predict multiple future steps using a
singlemodel, alongwith the added benefit of providing intermediate
states, which could be valuable for certain applications.

5 DISCUSSION
Two distinct types of experiments were executed to address the
complexities involved in predicting sensor data in MHD vehicles
comprehensively. The first focused on the model’s ability to handle
missing SPNs under various conditions, aiming to test resilience
to real-world uncertainties. The second evaluated the models’ pre-
dictive accuracy for multiple future time steps, emphasizing their
utility in long-term forecasting.

• DBT performed well in both experiments, showcasing its
all-around capabilities in terms of accuracy and efficiency.

• LSTM excelled in scenarios where understanding tempo-
ral patterns was vital, specifically in the Recursive Feeding
Method.

• SBT, while generally trailing in accuracy, demonstrated po-
tential for long-term predictions and showed improvements
when handling missing values, making it a viable option in
specific scenarios.

The two experiments, when viewed collectively, reveal a layered
understanding of each model’s strengths and weaknesses. DBT
emerges as a strong candidate for most scenarios, while LSTM and
SBT each have their unique nicheswhere they can be advantageous.

6 CONCLUSION
This study represents a substantive contribution to the field of
sensor data prediction in MHD vehicles, particularly in address-
ing missing sensor data. Through the rigorous evaluation of three
distinct machine learning algorithms, we have demonstrated that
a specifically tailored neural network architecture possesses sig-
nificant potential for accurately filling both single and multiple
sensor data gaps. The findings indicate a notable advancement in
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this domain and point towards the capability of such machine learn-
ing models to contribute meaningfully to vehicle performance and
safety.

While the current research offers conclusive insights, the appli-
cation of the findings presents several promising avenues for future
exploration:

(1) Real-world Model Integration: Future work could focus
on implementing the trained models within operational
MHD vehicles, such as a 2014 Kenworth T270, to assess
real-world applicability and effectiveness.

(2) Malfunction Simulations: An intriguing extension of this
work would involve real-time, on-road experiments designed
to simulate sensor malfunctions. Such simulations can fur-
ther validate the real-time responsiveness and fault tolerance
of the models

(3) System Resilience Evaluation: An important considera-
tion for future investigations would be to reintroduce the
model-predicted values back into a vehicle’s control network.
This would allow for a holistic assessment of the impact on
operational resilience, augmenting the existing scope of this
research.

In closing, the study underscores the potential of machine learning
techniques in enhancing the cyber-resilience of MHD vehicles.
These findings provide a robust foundation for future work in this
important area.
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