
Delegation of TLS Authentication 
to CDNs using Revocable 

Delegated Credentials

1

Daegeun Yoon, Taejoong Chung, Yongdae Kim



 A TLS protocol consists of two stages: authentication and encryption.
– TLS authentication: proving the domain owner’s identity to a browser

– TLS encryption: encrypting the transmitted data

TLS Protocol

2

Domain ownerBrowser

Proving possession of the TLS 
certificate's private key.

Encrypting the transmitted data

TLS authentication stage

TLS encryption stage



Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

3

CDN

Domain owner

CDN‘s
edge servers

Browser



Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

 However, the TLS standard does not support this communication model.

4

CDN

Domain owner

CDN‘s
edge servers

Browser

How to delegate?

How to authenticate?



Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

 However, the TLS standard does not support this communication model.
– Sharing the certificate’s private key is a common method for delegation.

 CDNs Generate the certificate and its private key.

 Domain owners upload their certificate and its private key.

CDN

Sharing the certificate’s private key

Domain owner

CDN‘s
edge servers

Browser
Deploys the cert and its 
private key to edge serversEncrypted by

a session key

Improves performance, 
security, and availability

5



Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

 However, the TLS standard does not support this communication model.
– Sharing the certificate’s private key is a common method for delegation.

 CDNs Generate the certificate and its private key.

 Domain owners upload their certificate and its private key. 

CDN

Sharing the certificate’s private key
(Unable to revoke the cert)

Domain owner

CDN‘s
edge servers

Browser
Deploys the cert and its 
private key to edge serversEncrypted by

a session key

Improves performance, 
security, and availability

Unreliable Revocation 
checking of the certificate

6



Existing Solutions: Delegated Credential
 RFC 9345 defines Delegated Credentials (DCs).

– Domain owners issue DCs to CDNs for TLS authentication.

– CDNs perform TLS authentication using the DCs and their private keys.

 DCs do not provide a method of distributing their revocation status.
– Even if a DC is compromised, the domain owner cannot revoke the DC.

– Inevitably, DCs are designed to be short-lived (at most 7 days).
 Domain owners require an issuance server capable of issuing DCs to CDNs every 

7 days.

7

Client

CDN

Encrypted by
a session key

Domain owner

Issues a DC



Existing Solutions: Delegated Credential
 RFC 9345 defines Delegated Credentials (DCs).

– Domain owners issue DCs to CDNs for TLS authentication.

– CDNs perform TLS authentication using the DCs and their private keys.

 DCs do not provide a method of distributing their revocation status.
– Even if a DC is compromised, the domain owner cannot revoke the DC.

– Inevitably, DCs are designed to be short-lived (at most 7 days).
 Domain owners require an issuance server capable of issuing DCs to CDNs every 

7 days.

8

Client

CDN

Encrypted by
a session key

Domain owner

Issues a DC

Unrevocable and 
short-lived credentials

Maintain the issuance server 
for the short-lived credentials



Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

9



Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

 No sharing of the domain owner’s private key

10



Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

 No sharing of the domain owner’s private key

 Revoking the delegation key without revoking the TLS certificate

11



Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

 No sharing of the domain owner’s private key

 Revoking the delegation key without revoking the TLS certificate

 Retaining control of revoking delegation keys

12



Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

 No sharing of the domain owner’s private key

 Revoking the delegation key without revoking the TLS certificate

 Retaining control of revoking delegation keys

 Compliance of RDC with the current standards and infrastructure

13



Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

 No sharing of the domain owner’s private key

 Revoking the delegation key without revoking the TLS certificate

 Retaining control of revoking delegation keys

 Compliance of RDC with the current standards and infrastructure

 Retaining benefits of using a CDN

14



Question
 How can we distribute the revocation status of RDCs?

15



Question
 How can we distribute the revocation status of RDCs?

 DNS!

16



Question
 How can we distribute the revocation status of RDCs?

 DNS!

 DNS is an essential component of web communication
– Not only provide IP addresses, but also provide various types of information for 

web communication

 Already support to deliver TLS-level information such as TLSA, SVCB

17



Question
 How can we distribute the revocation status of RDCs?

 DNS!

 DNS is an essential component of web communication
– Not only provide IP addresses, but also provide various types of information for 

web communication

 Already support to deliver TLS-level information such as TLSA, SVCB

– Support security mechanism

 Integrity: DNSSEC

 Confidentiality: DoH

18



Design Overview

19

Domain owner

2. Generates RDC
CDN 

Provider

1. Provides CDN pubkey

3. Issue an RDC 
with TLS cert

Authoritative DNS 
server

[DNSSEC-enabled]

Stores RDC status

DNS resolver

[DoH-enabled]

Browser

5. TLS authentication 
using RDC and TLS cert

Obtains RDC status

4. Deploys the RDC 
with TLS cert Edge 

servers



Properties of RDC
 RDC has a unique identifier, called an “RDC_serial”

20

Domain owner

2. Generates RDC
CDN 

Provider

1. Provides CDN pubkey

3. Issues an RDC
with TLS cert

Authoritative DNS 
server

[DNSSEC-enabled]

Stores RDC status

DNS resolver

[DoH-enabled]

Browser

5. TLS authentication 
using RDC and TLS cert

Obtains RDC status

4. Deploys the RDC
with TLS cert Edge 

servers

RDC

RDC_serial
CDN_PublicKeyInfo
ValidTime
DomainOwner_Signature



Determination of Revocation Status
 The revocation status of an RDC is determined by existence of the 

subdomain named <RDC_serial>

– Revoked if <RDC_serial>.<domain name> exists

– Valid if <RDC_serial>.<domain name> does not exists

21

Domain owner

2. Generates RDC
CDN 

Provider

1. Provides CDN pubkey

3. Issues RDC with 
TLS cert

Authoritative DNS 
server

[DNSSEC-enabled]

DNS resolver

[DoH-enabled]

Browser

5. TLS authentication 
using RDC and TLS cert

4. Deploys RDC 
with TLS cert Edge 

servers

Stores RDC status Obtains RDC status



Distribution of Revocation Status
 Integrity of the RDC revocation status is guaranteed by DNSSEC.

– NSEC record, which is a type of DNSSEC record, provides the 
proof of existence of the domain.

 Confidentiality of the RDC revocation status is guaranteed by DoH.

22

Domain owner

2. Generates RDC
CDN 

Provider

1. Provides CDN pubkey

3. Issues RDC with 
TLS cert

Authoritative DNS 
server

[DNSSEC-enabled]

Stores RDC status

DNS resolver

[DoH-enabled]

Browser

5. TLS authentication 
using RDC and TLS cert

4. Deploys RDC 
with TLS cert Edge 

servers

NSEC record (existence of the subdomain)

Obtains RDC status



Verification of Revocation Status
 Browsers obtain the RDC status during the TLS authentication procedure.

– Verify the DNS response including NSEC record to determine the existence of the 
subdomain.

23

Domain owner

2. Generates RDC
CDN 

Provider

1. Provides CDN pubkey

3. Issues RDC with 
TLS cert

Authoritative DNS 
server

[DNSSEC-enabled]

Stores RDC status

DNS resolver

[DoH-enabled]

Browser

5. TLS authentication 
using RDC and TLS cert

4. Deploys RDC 
with TLS cert Edge 

servers

- Verifying the certificate chain
- Verifying the RDC
- Verifying the RDC status
- Verifying the TLS signature

TLS authentication procedure

Obtains RDC status



Implementation and Experimental Setup
 Implementing RDC into the Go tls package and the NSS library

– The Go tls package for the RDC-supporting HTTPS server

– The NSS library for the RDC-supporting Firefox Nightly browser

24

Domain owner

1. Generates RDC

Authoritative DNS 
server

[DNSSEC-enabled]

Stores RDC status

DNS resolver

[DoH-enabled]

Browser
3. TLS authentication using RDC and TLS cert

4. Obtains RDC status

2. Deploys RDC with TLS cert Edge 
servers

Go HTTPS server
(AWS t2.small. Virginia, Paris, Seoul)

Cloudflare Bind9
(AWS t2.small. Seoul)

Firefox Nightly
(Seoul)Let’s Encrypt cert



Evaluation
 Only one-time delay (50-130 ms) compared to the vanilla TLS

– Moderate security but better performance than other TLS encryption solutions 
that introduce overhead for every communication

25

<TLS setup time> <Page load time>



Demo for Function Evaluation

26



Conclusion
 We introduce Revocable Delegated Credential (RDC).

– Leveraging DNS to store and distribute the revocation status
– Revoking the delegation key without revoking the TLS certificate
– Retaining control of revoking delegation keys
– Compliance with the current standards and infrastructure

 We integrated RDC into Go TLS package and the NSS library
– Enabling RDC support for both HTTPS servers and browsers
– Validation of an RDC’s revocation status is only associated with a negligible 

one-time delay.
– Code available at https://github.com/revtls/revtls

 RDC allows moderate security but better performance with full 
benefits of CDNs

27



Thank you!

28

Daegeun Yoon

dayoon@etri.re.kr (ydgcjh2019@gmail.com)



Previous Research
 TEE solutions

– Phoenix [1], Styx [2]

 TLS extension
– maTLS [3], mcTLS [4]

 DANE solution
– InviCloak [5]

 Crypto Solution
– BlindBox [6], Embark [7]

 Most studies focus on protecting the TLS encryption layer.
– Better security but high trade-offs 

 Performance degradation, inability to use full functionalities of CDNs, additional 
deployment

29 [1] Herwig et.al., Usenix Seccurity’20 [2] Wei et.al., IEEE SoC’17 [3] Lee et.al., NDSS’19 [4] Naylor et.al., ACM SIGCOMM’15 
[5] Lin et.al., ACM CCS’22 [6] Sherry et.al., ACM SIGCOMM’15 [7] Lan et.al., Usenix NSDI’16


