TLS Protocol

- A TLS protocol consists of two stages: authentication and encryption.
 - TLS authentication: proving the domain owner’s identity to a browser
 - TLS encryption: encrypting the transmitted data
Delegation of TLS Authentication to CDNs

- Today, numerous web communications rely on intermediaries (e.g., CDNs).
 - Domain owners need to delegate TLS authentication to CDNs.
Delegation of TLS Authentication to CDNs

- Today, numerous web communications rely on intermediaries (e.g., CDNs).
 - Domain owners need to delegate TLS authentication to CDNs.
- However, the TLS standard does not support this communication model.
Delegation of TLS Authentication to CDNs

- Today, numerous web communications rely on intermediaries (e.g., CDNs).
 - Domain owners need to delegate TLS authentication to CDNs.
- However, the TLS standard does not support this communication model.
 - Sharing the certificate’s private key is a common method for delegation.
 - CDNs Generate the certificate and its private key.
 - Domain owners upload their certificate and its private key.
Delegation of TLS Authentication to CDNs

- Today, numerous web communications rely on intermediaries (e.g., CDNs).
 - Domain owners need to delegate TLS authentication to CDNs.
- However, the TLS standard does not support this communication model.
 - Sharing the certificate’s private key is a common method for delegation.
 - CDNs Generate the certificate and its private key.
 - Domain owners upload their certificate and its private key.
Existing Solutions: Delegated Credential

- RFC 9345 defines Delegated Credentials (DCs).
 - Domain owners issue DCs to CDNs for TLS authentication.
 - CDNs perform TLS authentication using the DCs and their private keys.
- DCs do not provide a method of distributing their revocation status.
 - Even if a DC is compromised, the domain owner cannot revoke the DC.
 - Inevitably, DCs are designed to be short-lived (at most 7 days).
 - Domain owners require an issuance server capable of issuing DCs to CDNs every 7 days.
Existing Solutions: Delegated Credential

- RFC 9345 defines Delegated Credentials (DCs).
 - Domain owners issue DCs to CDNs for TLS authentication.
 - CDNs perform TLS authentication using the DCs and their private keys.

- DCs do not provide a method of distributing their revocation status.
 - Even if a DC is compromised, the domain owner cannot revoke the DC.
 - Inevitably, DCs are designed to be short-lived (at most 7 days).

 - Domain owners require an issuance server capable of issuing DCs to CDNs every 7 days.
Design Goals

- We design **Revocable** Delegated Credentials (RDCs) that satisfy the five goals to achieve secure delegation of TLS authentication
Design Goals

- We design **Revocable** Delegated Credentials (RDCs) that satisfy the five goals to achieve secure delegation of TLS authentication

- No sharing of the domain owner’s private key
Design Goals

- We design **Revocable** Delegated Credentials (RDCs) that satisfy the five goals to achieve secure delegation of TLS authentication

- No sharing of the domain owner’s private key
- Revoking the delegation key without revoking the TLS certificate
Design Goals

- We design **Revocable** Delegated Credentials (RDCs) that satisfy the five goals to achieve secure delegation of TLS authentication

- No sharing of the domain owner’s private key
- Revoking the delegation key without revoking the TLS certificate
- Retaining control of revoking delegation keys
Design Goals

- We design **Revocable** Delegated Credentials (RDCs) that satisfy the five goals to achieve secure delegation of TLS authentication:
 - No sharing of the domain owner’s private key
 - Revoking the delegation key without revoking the TLS certificate
 - Retaining control of revoking delegation keys
 - Compliance of RDC with the current standards and infrastructure
Design Goals

- We design Revocable Delegated Credentials (RDCs) that satisfy the five goals to achieve secure delegation of TLS authentication

 - No sharing of the domain owner’s private key
 - Revoking the delegation key without revoking the TLS certificate
 - Retaining control of revoking delegation keys
 - Compliance of RDC with the current standards and infrastructure
 - Retaining benefits of using a CDN
Question

- How can we distribute the revocation status of RDCs?
Question

- How can we distribute the revocation status of RDCs?
- DNS!
Question

❖ How can we distribute the revocation status of RDCs?
❖ DNS!

❖ DNS is an essential component of web communication
 – Not only provide IP addresses, but also provide various types of information for web communication
 ▪ Already support to deliver TLS-level information such as TLSA, SVCB
Question

- How can we distribute the revocation status of RDCs?
 - DNS!

- DNS is an essential component of web communication
 - Not only provide IP addresses, but also provide various types of information for web communication
 - Already support to deliver TLS-level information such as TLSA, SVCB
 - Support security mechanism
 - Integrity: DNSSEC
 - Confidentiality: DoH
Design Overview

1. Provides CDN pubkey
2. Generates RDC
3. Issue an RDC with TLS cert
4. Deploys the RDC with TLS cert
5. TLS authentication using RDC and TLS cert

Domain owner
2. Generates RDC
Stores RDC status

CDN Provider
1. Provides CDN pubkey
3. Issue an RDC with TLS cert
4. Deploys the RDC with TLS cert

Edge servers
4. Deploys the RDC with TLS cert

Browser
5. TLS authentication using RDC and TLS cert
Obtains RDC status

Authoritative DNS server
[DNSSEC-enabled]

DNS resolver
[DoH-enabled]
Properties of RDC

- RDC has a unique identifier, called an “RDC_serial”
Determination of Revocation Status

- The revocation status of an RDC is determined by existence of the subdomain named `<RDC_serial>`
 - Revoked if `<RDC_serial>.<domain name>` exists
 - Valid if `<RDC_serial>.<domain name>` does not exist

Diagram:
- **Domain owner**
 - 2. Generates RDC
 - Stores RDC status

- **CDN Provider**
 - 1. Provides CDN pubkey
 - 3. Issues RDC with TLS cert
 - 4. Deploys RDC with TLS cert

- **Authoritative DNS server**
 - [DNSSEC-enabled]

- **Edge servers**
 - 5. TLS authentication using RDC and TLS cert

- **Browser**
 - Obtains RDC status

- **DNS resolver**
 - [DoH-enabled]
Distribution of Revocation Status

- Integrity of the RDC revocation status is guaranteed by DNSSEC.
 - NSEC record, which is a type of DNSSEC record, provides the proof of existence of the domain.
- Confidentiality of the RDC revocation status is guaranteed by DoH.
Verification of Revocation Status

- Browsers obtain the RDC status during the TLS authentication procedure.
 - Verify the DNS response including NSEC record to determine the existence of the subdomain.

- Domain owner provides CDN pubkey.
- CDN provider issues RDC with TLS cert.
- Authoritative DNS server provides RDC status.
- Edge servers verify the certificate chain, RDC, RDC status, and TLS signature.
- Browser obtains RDC status.
- DNS resolver [DoH-enabled].
Implementation and Experimental Setup

- Implementing RDC into the Go tls package and the NSS library
 - The Go tls package for the RDC-supporting HTTPS server
 - The NSS library for the RDC-supporting Firefox Nightly browser
Evaluation

- Only one-time delay (50-130 ms) compared to the vanilla TLS
 - Moderate security but better performance than other TLS encryption solutions that introduce overhead for every communication
Demo for Function Evaluation

TLS with RDC only requires a TLS certificate, an RDC, and the RDC's private key (No TLS certificate's private key is required)
Conclusion

- We introduce **Revocable** Delegated Credential (RDC).
 - Leveraging DNS to store and distribute the revocation status
 - Revoking the delegation key without revoking the TLS certificate
 - Retaining control of revoking delegation keys
 - Compliance with the current standards and infrastructure

- We integrated RDC into Go TLS package and the NSS library
 - Enabling RDC support for both HTTPS servers and browsers
 - Validation of an RDC’s revocation status is only associated with a negligible one-time delay.
 - Code available at https://github.com/revtls/revtls

- RDC allows moderate security but better performance with full benefits of CDNs
Thank you!

Daegeun Yoon
dayoon@etri.re.kr (ydgcjh2019@gmail.com)
Previous Research

- TEE solutions
 - Phoenix [1], Styx [2]

- TLS extension
 - maTLS [3], mcTLS [4]

- DANE solution
 - InviCloak [5]

- Crypto Solution
 - BlindBox [6], Embark [7]

- Most studies focus on protecting the TLS encryption layer.
 - Better security but high trade-offs
 - Performance degradation, inability to use full functionalities of CDNs, additional deployment

[3] Lee et al., NDSS'19
[4] Naylor et al., ACM SIGCOMM'15
[5] Lin et al., ACM CCS'22
[6] Sherry et al., ACM SIGCOMM'15
[7] Lan et al., Usenix NSDI'16