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 A TLS protocol consists of two stages: authentication and encryption.
– TLS authentication: proving the domain owner’s identity to a browser

– TLS encryption: encrypting the transmitted data

TLS Protocol
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Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.
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Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

 However, the TLS standard does not support this communication model.
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Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

 However, the TLS standard does not support this communication model.
– Sharing the certificate’s private key is a common method for delegation.

 CDNs Generate the certificate and its private key.

 Domain owners upload their certificate and its private key.
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Delegation of TLS Authentication to CDNs
 Today, numerous web communications rely on intermediaries (e.g., CDNs).

– Domain owners need to delegate TLS authentication to CDNs.

 However, the TLS standard does not support this communication model.
– Sharing the certificate’s private key is a common method for delegation.

 CDNs Generate the certificate and its private key.

 Domain owners upload their certificate and its private key. 
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Existing Solutions: Delegated Credential
 RFC 9345 defines Delegated Credentials (DCs).

– Domain owners issue DCs to CDNs for TLS authentication.

– CDNs perform TLS authentication using the DCs and their private keys.

 DCs do not provide a method of distributing their revocation status.
– Even if a DC is compromised, the domain owner cannot revoke the DC.

– Inevitably, DCs are designed to be short-lived (at most 7 days).
 Domain owners require an issuance server capable of issuing DCs to CDNs every 

7 days.
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Existing Solutions: Delegated Credential
 RFC 9345 defines Delegated Credentials (DCs).

– Domain owners issue DCs to CDNs for TLS authentication.

– CDNs perform TLS authentication using the DCs and their private keys.

 DCs do not provide a method of distributing their revocation status.
– Even if a DC is compromised, the domain owner cannot revoke the DC.

– Inevitably, DCs are designed to be short-lived (at most 7 days).
 Domain owners require an issuance server capable of issuing DCs to CDNs every 

7 days.
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Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication
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Design Goals
 We design Revocable Delegated Credentials (RDCs) that satisfy the five 

goals to achieve secure delegation of TLS authentication

 No sharing of the domain owner’s private key

 Revoking the delegation key without revoking the TLS certificate

 Retaining control of revoking delegation keys

 Compliance of RDC with the current standards and infrastructure

 Retaining benefits of using a CDN
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Question
 How can we distribute the revocation status of RDCs?
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Question
 How can we distribute the revocation status of RDCs?

 DNS!

 DNS is an essential component of web communication
– Not only provide IP addresses, but also provide various types of information for 

web communication

 Already support to deliver TLS-level information such as TLSA, SVCB

– Support security mechanism

 Integrity: DNSSEC

 Confidentiality: DoH
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Design Overview
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Properties of RDC
 RDC has a unique identifier, called an “RDC_serial”
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Determination of Revocation Status
 The revocation status of an RDC is determined by existence of the 

subdomain named <RDC_serial>

– Revoked if <RDC_serial>.<domain name> exists

– Valid if <RDC_serial>.<domain name> does not exists
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Distribution of Revocation Status
 Integrity of the RDC revocation status is guaranteed by DNSSEC.

– NSEC record, which is a type of DNSSEC record, provides the 
proof of existence of the domain.

 Confidentiality of the RDC revocation status is guaranteed by DoH.
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Verification of Revocation Status
 Browsers obtain the RDC status during the TLS authentication procedure.

– Verify the DNS response including NSEC record to determine the existence of the 
subdomain.
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Implementation and Experimental Setup
 Implementing RDC into the Go tls package and the NSS library

– The Go tls package for the RDC-supporting HTTPS server

– The NSS library for the RDC-supporting Firefox Nightly browser
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Evaluation
 Only one-time delay (50-130 ms) compared to the vanilla TLS

– Moderate security but better performance than other TLS encryption solutions 
that introduce overhead for every communication
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Demo for Function Evaluation
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Conclusion
 We introduce Revocable Delegated Credential (RDC).

– Leveraging DNS to store and distribute the revocation status
– Revoking the delegation key without revoking the TLS certificate
– Retaining control of revoking delegation keys
– Compliance with the current standards and infrastructure

 We integrated RDC into Go TLS package and the NSS library
– Enabling RDC support for both HTTPS servers and browsers
– Validation of an RDC’s revocation status is only associated with a negligible 

one-time delay.
– Code available at https://github.com/revtls/revtls

 RDC allows moderate security but better performance with full 
benefits of CDNs
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Thank you!
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Previous Research
 TEE solutions

– Phoenix [1], Styx [2]

 TLS extension
– maTLS [3], mcTLS [4]

 DANE solution
– InviCloak [5]

 Crypto Solution
– BlindBox [6], Embark [7]

 Most studies focus on protecting the TLS encryption layer.
– Better security but high trade-offs 

 Performance degradation, inability to use full functionalities of CDNs, additional 
deployment
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