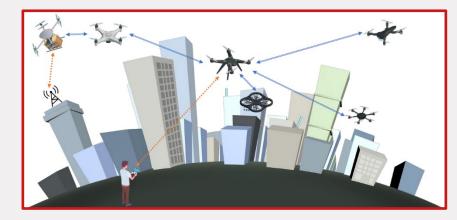


Lightweight Privacy-Preserving Proximity Discovery for Remotely-Controlled Drones

¹ Pietro Tedeschi, ² Savio Sciancalepore, ³ Roberto Di Pietro
¹ Technology Innovation Institute, Autonomous Robotics Research Center, Abu Dhabi, United Arab Emirates
² Eindhoven University of Technology (TU/e), Department of Mathematics and Computer Science, Netherlands
³ King Abdullah University of Science and Technology - CEMSE - RC3 Thuwal, Saudi Arabia

ACSAC 2023 – Austin (TX, US) – 6 December 2023


Agenda

- Context and Motivation
- System Model
- LPPD Protocol
- Security Considerations
- Performance Assessment
- Conclusion and Future Work

Context

- Unmanned Aerial Vehicles (UAVs), a.k.a. drones
- Several application domains
 - Goods Delivery
 - Search & Rescue
 - o Telecom services
- Autonomous or Remotely-Piloted
- Expected Proliferation (FAA, 2022)
 - 314,689 commercial drones registered in US
 - 538,172 recreational drones registered in US
 - 3,644 paper registrations in US

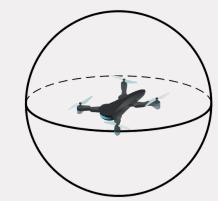
Motivation

- Proximity discovery for RPAS is critical
 - UAVs Safety
 - **o** Business Integrity
 - People Safety
 - Mission Efficiency
- We need a solution for real-time proximity detection between UAVs
- Naïve Solution: Sharing of Location and Time Data
 - Privacy Issues

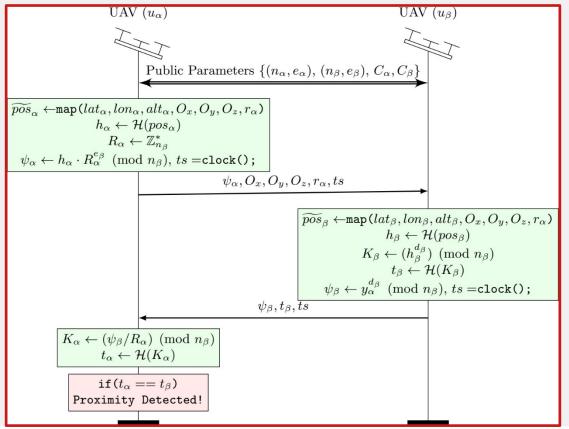
• Can we discover proximity between remotely-piloted UAVs without disclosing precise location data?

Challenges

- UAVs Heterogeneous Processing Capabilities
- Time constraints
 - Proximity should be detected before collisions occur
- Limited Energy Availability
 - From 7 to 30 mins autonomy
- GPS Inaccuracies


System and Adversary Model

- 2 Remotely-Piloted Drones
 - Drones occupy a given location
 - Drones can move anytime based on pilot input
 - Communication module available onboard (e.g., Wi-Fi Direct)
 - Wi-Fi Radio Visibility between the drones
 - Traffic encryption/authentication active (e.g., TLS)
- Adversary features both passive and active features
 - $\circ~$ Objective: knowledge of the location of the drones
 - Disrupt the flight of the drone, e.g., via jamming or spoofing
 - Capture the drone


Space Tessellation Logic

- LPPD is rooted in a specific division of the Earth's surface in multiple dynamic three-dimensional spheres
- Sphere centered at the drone A location with radius r_A : $r_A = T_A + \delta + V_{MAX} \cdot t_p$

- \circ T_A Guard space, δ GNSS inaccuracy, V_{MAX} maximum speed, t_p execution time
- Random displacement of drone's location to be used for proximity detection (i.e., usage a random nonce $s = (s_x, s_y, s_z)$). Origin **O** = **o** + *s*
- Actual location of UAV is still at the center of a sphere, but the specific identifier of the sphere is moved according to the nonce
- The comparison among the identifiers occurs in the encrypted domain, using *private-set intersection*

Private Set Intersection

TU/e

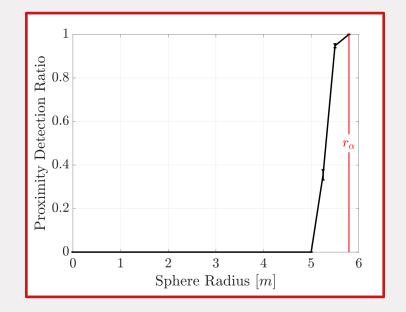
Considerations

- We only detect proximity: evasion maneuvers follow (out of scope)
- LPPD needs to be run for every couple of communicating drones (scalability is a concern)
- Security and Privacy
 - Only assumption: trust on public key/certificate of remote party
 - Location is never disclosed (difficulty: breaking RSA)
 - Spoofing protection thanks to TLS
 - Wireless Localization Attacks
 - Tackled in another paper (CCNC 2024)
 - Not so easy to achieve (requires infrastructure of multiple sensors)
 - Not so accurate depending on environmental factors (noise)

Security Considerations

- Formal security analysis of single LPPD instance via ProVerif
 - Logic usage of secure crypto primitives
 - Secrecy of locations, although being weak secrets
 - Resistance of the protocol to offline guessing attacks on the locations
 - Authenticity of the messages

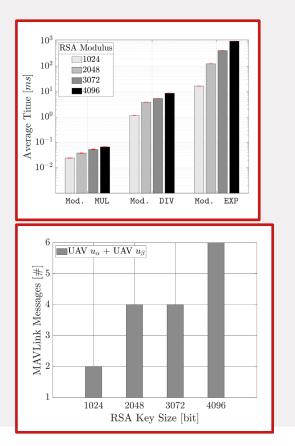
<i>Verification summary:</i> Weak secret posA is true .	
Weak secret posB is true .	
Query inj-event(termUAVa(x,y))	\Rightarrow
<pre>inj-event(acceptUAVb(x,y)) is true.</pre>	
Query inj-event(termUAVb(x,y))	\implies
<pre>inj-event(acceptUAVa(x,y)) is true.</pre>	
Query not attacker(posA []) is true .	
Query not attacker(posB []) is true .	

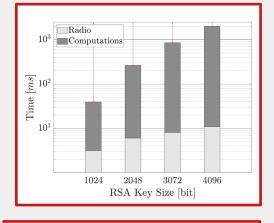

Code Available Open-Source: <u>https://github.com/pietrotedeschi/lppd/</u>

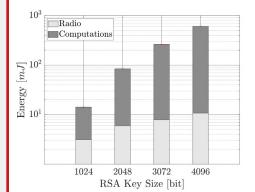
11 ACSAC 2023 – Austin (TX, US) – 4-8 December 2023

Accuracy Assessment - Simulations

- Simulation Analysis via MATLAB
- 50 UAVs to move randomly in a geographical area of 50 × 50 × 120 m³, at a random speed [0 20.88]^m/_s
- GPS Error $\delta = 0.375m$
- Common guard space of 5m
- Guard Radius: $\delta + T + VMAX \cdot tp = 0.375 + 5 + 20.88 \cdot 0.02 = 5.793m$
- Increasing the sphere radius increases the capability of LPPD to detect co-locations




Performance Assessment on 3DR-Solo Drone


- Implementation of LPPD on a real drone
 - Hardware
 - 3DR-Solo Drone
 - ARM Cortex A9 1.00 GHz
 - 7, 948 MB (ROM)
 - 512 MB (RAM)
 - Software
 - 3DR Poky Linux (Yocto)
 - C Programming Language
 - Micro Air Vehicle Message Marshalling Library
 - OpenSSL
 - 1,545.324 KB of Flash Memory and 90.179 KB of RAM

Performance Evaluation

• Time consumption

With RSA Key Size of 3072 or less, always less than 1 second

Energy Consumption

•

14.15*mJ* of energy, i.e., the $5 \cdot 10^{-6}$ % of the 3DR-Solo battery

TU/e

Conclusion and Future Work

- We presented LPPD, the first solution for lightweight privacy-preserving proximity discovery for remotely-piloted Unmanned Aerial Vehicle
- Combination of a novel space tessellation logic based on randomized spheres with a lightweight solution for private-set intersection
- Security of LPPD has been formally verified
- LPPD consumes only 14.15mJ of energy, i.e., the $5 \cdot 10^{-6}$ % of the 3DR-Solo battery
- Future Work: Extension of LPPD in a broadcast scenario (compliance with Remote ID)

Savio Sciancalepore, PhD

Assistant Professor Security Cluster --- Faculty of Mathematics and Computer Science Eindhoven University of Technology Eindhoven, The Netherlands email: <u>s.sciancalepore@tue.nl</u> web: <u>ssciancalepore.win.tue.nl</u>

ACSAC 2023 – Austin (TX, US) – 4-8 December 2023