Cross Body Signal Pairing (CBSP\textsubscript{CR}): A Key Generation Protocol for Pairing Wearable Devices with Cardiac and Respiratory Sensors

Jafar Pourbemany (Cleveland State University)

Co-Author:
Ye Zhu (Cleveland State University)

ACSAC 2023
Pairing

• Why pairing?
 • To generate a common key to secure the communication
Traditional Approaches

• Traditional pairing approach
 • Bluetooth pairing (using a PIN code or password)
Traditional Approaches Drawback

• It needs user interaction.
 • Pairing is hard when you have lots of devices
Traditional Approaches Drawback

• Most wearable devices do not have a user interface
 • e.g., keyboard and display
Pairing Based on Body Signals

• **Input**: observation of common dynamics
• **Output**: shared symmetric key
• **Example**: two wearables detecting user’s heart beats
Prior Works

• Focus on the same type of sensors and signals

Signals Used for Pairing

- PPG sensor
- Piezoelectric
- SCG
- Accelerometer
- Gyroscope
- EMG sensor
- ECG sensor
- ECG
- Motion
- Accelerometer
- Gyroscope
- Accelerometer
- ECG
Motivating Question

• How to pair smart wearables equipped with different sensors sensing different body signals?
Cross Body Signal Pairing

• Pairing based on the heartbeat and breathing patterns
 • Users do not need to do some special actions (e.g., walking or shaking)

• Use wearables equipped with different types of sensors
Background

• The physiological connection between heart and lungs

Background

• The typical respiratory, ECG, and PPG signals
Background

• Relationship between cardiac and respiratory signals

Idealized respiratory modulations of the ECG [2]

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$VE = a + b_1 HR$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>$VE = a + b_1 HR + b_2 HR^2$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$VE = e^{a+b_1 HR}$</td>
</tr>
</tbody>
</table>

Models used for respiration estimation

Feasibility Analysis

Actual VE signal and the estimated-VE signal in moderate and high-intensity exercises

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>Moderate intensity</th>
<th>High intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.1601</td>
<td>0.0707</td>
<td>0.0692</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.1650</td>
<td>0.0697</td>
<td>0.0677</td>
</tr>
<tr>
<td>Exponential</td>
<td>0.1663</td>
<td>0.0686</td>
<td>0.0656</td>
</tr>
</tbody>
</table>

RMSPE of equations in different intensity levels

Actual respiratory signal and the respiratory signal extracted from cardiac signal in resting phase

<table>
<thead>
<tr>
<th>Activity</th>
<th>Rest</th>
<th>Moderate intensity</th>
<th>High intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSPE</td>
<td>0.0522</td>
<td>0.0754</td>
<td>0.1593</td>
</tr>
</tbody>
</table>

RMSPE of respiratory signal extraction
Challenges

1. Differing signals characteristics
 • Measuring unit, amplitude, frequency
 • Noise measurement

2. Activity intensity dependency
 • Varying RMSPE based on activity
Cross Body Signal Pairing (CBSP) Protocol

• **Goal:** Use cardiac and breathing patterns to generate shared keys in wearables equipped with different types of sensors by proving that devices are attached to the same body

• We use wearables equipped with ECG/PPG and/or RIP sensors
Cross Body Signal Pairing (CBSP) Protocol

• Threat Model
 • Third party’s data
 • Historical data of user
 • Remote observation
How do we address the challenges?

• Different signal characteristics
 • Preprocessing
 • Filtering
 • Cardiac Sensors: bandpass filter with cutoff frequencies of 0.5 Hz and 3 Hz
 • RIP Sensor: bandpass filter with cutoff frequencies of 0.1 Hz and 1 Hz
 • Normalization
How do we address the challenges?

- Mode switching
 - Switching between estimation and extraction mode
 - Criterion: respiration rate
 - The respiration rate is calculated using IPIs
 - Switching buffer and threshold

![Diagram of Mode Switch Module](image-url)

Preprocessed signal → **RR > threshold** →
- yes → Estimation-based pairing
- no → Extraction-based pairing
Shared Key Generation

• How to generate 100% same bit string on both devices
 • Optimal quantization
 • Lloyd-Max
 • Effective error correction
 • BCH
CBSP Architecture
Evaluation

• Performance metrics
 • Key generation rate (KGR)
 • Entropy
 • Bit agreement rate

• Impact of various parameters
 • Quantization (number of bits per sample)
 • Error correction (BCH parameters)
 • Switching mode
 • Activity intensity level
Evaluation

• Experiment setup
 • Smart shirt (Hexoskin) and smartwatch (Samsung Galaxy Watch 3)
 • IRB approval
 • 30 participants (16 males and 14 females aged between 18 and 56)
 • Incremental exercises on stationary bike
 • Standardized in cardiorespiratory research
 • Record a video of the participant during the experiment for remote attack
Evaluation

• Result
 • Devices attached to the same body can generate a secure 128-bit key every 80 seconds.

<table>
<thead>
<tr>
<th>Pairing mode</th>
<th>Extraction-based</th>
<th>Model-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KGR (key/sec)</td>
<td>Entropy</td>
</tr>
<tr>
<td>Intensity level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting</td>
<td>0.0077</td>
<td>0.99</td>
</tr>
<tr>
<td>Moderate intensity</td>
<td>0.0065</td>
<td>0.99</td>
</tr>
<tr>
<td>High intensity</td>
<td>0.0046</td>
<td>0.98</td>
</tr>
</tbody>
</table>

The results of CBSP in extraction- and model-based pairing

• CBSP is robust against different types of attacks (low similarity of 68.1%)
Resistance to Attacks

• Impersonation attack with a third-party’s data
 • The attacker cannot achieve more than 68.1% match

• Impersonation attack with historical data
 • At most 73% match
Resistance to Attacks

• Video attack
 • Respiration extraction using Hue channel

• The attacker cannot achieve more than 78.6% match
Conclusion

• CBSP enables wearables pairing using cardiac and breathing signal
• CBSP demonstrates robustness against different types of attacks
• CBSP can generate a secure 128-bit key every 80 seconds
Thank You!

Jafar Pourbemany
pourbemany@ieee.org
Impact of parameters

• Switching threshold

• Error correction ratio