

Artemis: Defanging Software Supply Chain Attacks in Multi-repository Update Systems

Marina Moore, NYU

Use of multiple repositories

A software repository distributes *packages* containing software libraries or applications

Software is downloaded by *software installation tools*

Top 10 Linux distributions have average of 4.8 default repositories

Articulated Trust

Allow software installation tools to specify trusted developers and repositories for each package

Selective trust in developers and repositories

Artemis

Security framework that implements articulated trust

Extends the functionality of role-based access control (RBAC) models

Limitations of existing uses of multiple repositories

Dependency Confusion

Many companies use both a public repository and a private, internal repository

Company downloads package foo from the private repository

Attack:

- Upload package named foo to the public repository
 - \circ $\,$ Version number greater than the internal version

Requirement: per-package prioritization of repositories

Only want some packages from a repository

May not want all packages on a public repository

- Malicious versions through hijacked accounts
- Undertested/lower quality code

Requirement: Defining a trusted subset

Fallback problem

If one repository is unavailable, the installation tool will fallback to other repositories

May want some packages from particular repositories

Requirement: terminate search for a package

Repository compromise

Repository compromise is common

Attacker can replace any package signed with keys on the repository

Requirement: Mitigate repository compromise

Maintainer compromise

Maintainer compromise and protestware happen frequently

These attacks can be recovered from by revoking compromised maintainers

But not prevented

Requirement: Mitigate role compromise

Real-world use

Requirement: Shareable configuration

Requirement: preserve backwards compatibility with existing systems

Requirement: mechanisms added must not significantly affect performance

Threat model

Attacker can:

- Respond to user requests
- Compromise one or more keys
- Use compromised keys to perform arbitrary software attacks
- Upload an arbitrary package to an unused name on a public repository

Goal:

- Do not install less-prefered or arbitrary package
- Compromise resilience

Artemis

Multi-role Delegations

Key pinning

Repository RBAC

Artemis

Implementation

Processing time:

- 210 ms
- 38% overhead

Storage:

- 10.3 KB
- 0.34% overhead

Analysis of past attacks

Attacks from CNCF Catalog of Supply Chain Compromises

- Repository Compromise
- Compromised developer key
- Compromised key and repository
- Compromised key of another trusted developer
- Redirect to attacker repository
- Malicious new developer
- Malicious existing developer

Analysis of past attacks

				TI	UF	Arte	mis w/online ta	rgets	Arte	mis w/offline ta	rgets
Attack Type	Count	GPG/	Sigstore	Online	Offline	Key	Multi-role	Repository	Key	Multi-role	Repository
		TLS		targets	targets	pinning	delegations	RBAC	pinning	delegations	RBAC
Repository compromise	13	×	0	0	•	•	0	•	•	•	•
Compromised key and repository	3	×	0	0	\mathbf{O}	lacksquare	0	•	O	•	•
Compromised key	6	×	0	lacksquare	O	O	•	O	O	•	lacksquare
Compromised key for other trusted developer	2	×	×	•	•	•	•	•	•	•	•
Redirect to attacker repository	2	×	•	•	•	•	•	•	•	•	•
Malicious new developer	1	×	×	lacksquare	O	•	•	O	•	•	D
Malicious existing developer	2	×	×	Ð	Ð	×	•	×	×	•	×

Real-world Deployment

Adoption requirement	Deployment	Artemis features	Configured by		
Define updates for each vehicle	Automotive		OEM		
Protection from repository compromise	Automotive		OEM		
Gather updates from multiple suppliers	Automotive		OEM		
Using a third party container registry	Cloud	▼	Package manager		
Store sensitive data on a private repository	Cloud		Company		
Use software from a public repository	Cloud		Package manager		
Ensure updates are tested	Cloud		Package manager		
Repository thresholds	er-package ioritization	Define a trusted subset	sholds Terminate search for a package		

Conclusion

- Use of multiple software repositories has unique security challenges
- Articulated trust allows for selective trust in developers and repositories
- Implement articulated trust in Artemis
 - Multi-role delegations
 - Key pinning
 - Repository RBAC