o
e

FS3: Few-Shot and Self-Supervised
Framework for Efficient Intrusion
Detection 1n Internet of Things Networks

FLORIDA POLYTECHNIC
UNIVERSITY

2

Presenter: Ayesha S. Dina
Authors: Ayesha S. Dina, A. B. Siddique, D. Manivannan

FS3- source code: https://oithub.com/aveshasdina/FS3

» Intrusion Detection System (IDS)
»Background and related works
»Problem addresses in this work

»Proposed Framework

»Phase 1: Self Supervised Learning
»Phase 2: Triplet Loss Function
»Phase 3: Nearest Neighbor Classification

»Experiment

» Datasets
> Evaluation

» Conclusion

Intrusion Detection in Computer Networks

| IDS

Our work

S

| — -

i : Switch --. Internet
Firewall

\ T_ ®

Background and Related works

» Intrusion Detection System (IDS)
» Signature based IDSes
» Anomaly based IDSes

» Anomaly based IDSes use one of the following approaches
» Statistical approach
» Knowledge based approach
» Machine learning (ML) approach

Backeround and Related works: Literature Review

»1DSes based on ML- Binary classification and multi class classification

»Many ML- classifiers such as KNN, DT,

ENN, etc. were used.

» Used different datasets - KDD99, NSL-K
evaluation

DD, UNW-NBI15, etc. for

»In all these datasets, the data is imbalanced. i.e., not all attack classes

had equal number of samples

»Imbalanced data could yield poor performance on the ML.

» Traditional approaches,

» Up sampling and down sampling for balancing data.

»Each method faces the challenges of overfitti

ng and underfitting, respectively.

Ayesha S. Dina and D. Manivannan, “Intrusion detection based on Machine Learning techniques in computer networks”, in Internet of Thing 5

journal, 8 October, 2021, (h5-Index: 42)

Problems addressed in this work

» Data Imbalance in datasets used for evaluation

» Lack of availability of large labelled datasets

120

100

80
60
100
40
20
20
I
0
C-1 C-2 3 C-4 ¢S5

C6

Imbalanced data

FS3: A Framework for Intrusion Detection

(1) Self-Supervised Learning (2) Few-Shot Learning and Contrastive Training

(3) Nearest Neighbor Classification

<
~20% Labeled U‘ﬂ
N

Unlabeled Data ~20% Labeled
Data Data
1 Masking 1 Few instances per class
I N T T Few-shot
192.168.100.149 4044 192.168.100.3 80 TCP Fine-tuned
192.168.100.4 450 TabMLP
2782 192.168.100.6
192.168.100.148 26997 80 UDP

- = e = e

TabMLP
Anchor

——— - - - ———— —

Triplet Loss

Sub-sampled

Positive | ———>

- e e e e e e e e
= - - - ——

KNN
[Negative | Self- Few-shot
192.168.100.148 4044 TCP Supeersed Fine-tuned
192.168.100.149 80 UDP TabMLP
TabMLP
192.168.100.6 N !

Test Data

2 G —
N
\

Phase 1: Self-Supervised Learning

» We use TabNet (Attentive Interpretable Tabular Learning) as the
backbone model for self-supervised learning.

» Use encoder-decoder structure to learn important features from
the mput data and predict the masked or target variable.

» We used the masking objective to mask 20% of the features in the
input data.

» Tabular Multilayer Perceptron (TabMLP)
»Two dense layer

Phase 2: Triplet Loss Function

» Utilize Few-shot learning (FSL) with contrastive training to further train the pre-trained
model using a small number of instances.

» Leverage Triplet Loss:
» Minimize the distance between the anchor and the positive point
» Maximizing the distance between the anchor and the negative point.

> Shots:
» 5-Shot and 10-Shot

» Perform contrastive training five times for both 5-Shot and 10-Shot scenarios

I Anchor Positive Negative \ Embedding Vectors
1 1
: 1
1
: 192168000 .. TCP 192.1680.2 . TCP 209.240.235.92 .. UDP : Trlplet
< | : Loss
1 192.168.0.10 P (] 192.168.0.2 . TCP 192168044 .. SMIP : y . y\
S — | QP ——
209, sampleg . S-Shot \ 209.240.235.92 .. UDP 209.240.235.92 .. TCP 192.168.0.10 . TCP : O ;\ /
° perclass ' $+0) : P / =
Labeled samples | !
Data | ' l
: 192168044 .. SMIP 192168020 .. UDP 192.168.0.2 . TCP 1
| |
! !

Overview of few-shot learning using contrastive training with triplet loss

Phase 3: Nearest Neighbor Classification

»Used FAISS library for efficient and scalable search
» We used a sub-sampled KNN algorithm to further address class imbalance :

W; = Max(1 — \/;,a)
Where:

* W, is the weight assighed to the ith class.

* t is a hyperparameter controlling sub-sampling.

* p; is the size in the ith class.

* ais a constant defining the minimum weight for each class.

10

Experiment: Datasets

Table 1: Statistics of WUSTL-EHMS dataset.

Class | Train | (%) | Test | (%)

Normal | 10275 | 87.47 | 2855 | 87.44
Attack 1472 | 12.53 | 410 | 12.56

Table 2: Statistics of WUSTL-IIoT dataset. Table 3: Statistics of Bot-IoT dataset.
Class Train | (%) | Test | (%) Class Train | (%) | Test | (%)
Normal 797261 | 92.71 | 221462 | 92.71 DDoS 1233052 | 52.52 | 385309 | 52.51
DoS 56379 6.56 15661 6.56 DoS 1056118 | 44.98 | 330112 | 44.99
Reconnaissance 5932 0.69 1648 0.69 Reconnaissance | 58335 2.48 18163 | 2.48
Command Injection 185 0.02 52 0.02 Normal 296 0.01 107 0.015
Backdoor 152 0.02 43 0.02 Theft 52 0.002 14 0.002

11

Experiment: Evaluation

» Quantitative Evaluation
» Precision
»Recall
»F1 Score

» Qualitative Evaluation

»Draw some samples from the dataset and perform t-SNE projection to
evaluate the performance of various methods on this subset.

» Ablation Study

» Gaining a more profound comprehension of how each component impacts
the model's efficacy facilitates the evaluation and enhancement of our
approach.

12

Experiment: Competing Methods

» State-of-the-art Models
»CNN-BiLSTM
»PB-DID
»DBN-IDS

» CTGANSamp: Models were trained on the training datasets balanced
using synthetic samples.

»Focal: Models were trained using focal loss function

» Baseline Models

»ORG: Models were trained using original datasets (i.e., without
balancing the dataset)

»RND: Models were trained on the datasets, balanced using random
oversampling

»Dice: Models were trained using dice loss function

13

Evaluation: Quantitative Analysis

Table 4: Performance comparison of all methods on WUSTL-EHMS, WUSTL-IIoT, and BoT-IoT datasets.

DL Models Classifier’s WuSTI-EHMS WuStl-IIoT BoT-IoT
Name Pre Rec F1 Pre Rec F1 Pre Rec F1
CNN-BiLSTM [45] 0.9010 0.7305 0.7851 | 0.7222 0.4349 0.5086 | 0.2477 0.2563 0.0778
PB-DID [59] 0.4372 0.4998 0.4664 | 0.2105 0.1110 0.0214 | 0.1717 0.2037 0.1448
DBN-IDS [5] 0.7362 0.7105 0.7222 | 0.4631 0.6339 0.3851 | 0.1185 0.5582 0.1652
State-of-the-art Models | FNN-CTGANSamp [12] 0.9294 0.7364 0.7962 0.6628 0.3437 0.4050 0.4991 0.8652 0.5540
CNN-CTGANSamp [12] | 0.9107 0.7360 0.7921 0.7025 0.5122 0.5533 0.4298 0.7988 0.4536
FNN-Focal [13] 0.9524 0.7369 0.8011 0.3854 0.293 0.3194 | 0.5559 0.6380 0.5784
CNN-Focal [13] 0.9423 0.7338 0.7963 0.8198 0.6617 0.6974 | 0.6165 0.6325 0.5853
FNN-ORG 0.9382 0.7359 0.7975 | 0.5254 0.4151 0.4578 | 0.5073 0.6345 0.5436
FNN-RND 0.9339 0.7367 0.7974 | 0.5834 0.7630 0.5850 0.4990 0.4990 0.5275
Baseline Models FNN-Dice 0.9336 0.5000 0.4665 0.1854 0.2000 0.1924 | 0.0900 0.2000 0.1241
CNN-ORG 0.9284 0.7327 0.7927 0.7486 0.6142 0.6558 0.4434 0.5347 0.4211
CNN-RND 0.9272 0.7362 0.7956 | 0.5894 0.7720 0.5942 0.5349 0.7843 0.5680
CNN-Dice 0.0628 0.5000 0.1116 | 0.1854 0.2000 0.1924 | 0.0900 0.2000 0.1241
AVG 5-Shot 0.9794 0.9812 0.9801 | 0.8897 0.6804 0.7017 0.6198 0.6030 0.5960
FS3 (This work)
AVG 10-Shot 0.9698 0.9941 0.9809 | 0.7847 0.7050 0.7144 | 0.6314 0.6297 0.6046

14

Evaluation: Qualitative Analysis

10.0 10.0 10.0 10.0
.

° Comminj ° ° °
® DoS
% ® Normal @
75 ® — i iy 751 75 751 0®
: ' @ Backdoor : '
5.0 o 5.0 5.0 5.0)
25 25 25 25
N N N N
£ £ £ £
£ o0 £ o0 € o0 € oo
v v v v
-25 -25 -25 25
=5.0 =5.04 5.0 =5.0
151\ -751 -15 7.5
15 20 -0 -5 0 510 15 20 50 5 10 15 20
comp-1 comp-1 comp-1

(a) Ground Truth (b) CNN-RND (c) CNN-Focal (d) FS3

15

Evaluation: Ablation Study

Components Phase | Different Strategy WUSTL-EHMS WUSTL-IIoT BoT-IoT
Name of FS3 of KNN Pre Rec Fi Pre Rec Fi Pre Rec Fi

Classical 0.8434 0.7703 0.8007 | 0.7249 0.6488 0.6769 | 0.5248 0.5388 0.5043

Self-Supervised Encoder | Phase 1
Inverse of Class Size | 0.8567 0.8179 0.8357 | 0.6460 0.6829 0.6569 | 0.4790 0.6381 0.4891
" Classical 0.9294 09708 0.9488 | 0.7095 0.7023 0.6925 | 0.5581 0.7952 0.5645

Phase 2
Fine-tuned Encoder Inverse of class Size | 0.7965 0.9477 0.8458 | 0.6276 0.7457 0.6713 | 0.5518 0.7995 0.5531
Phase3 | Sub-Sampled KNN | 0.9571 0.9533 0.9552 | 0.9774 0.6734 0.7154 | 0.5904 0.7176 0.5871

16

Conclusion

»FS3

» Self-supervised learning, which utilizes SSL to extract latent patterns
and robust representations from unlabeled data

»Few-shot learning (FSL) and contrastive training, which enables the
model to learn from a small number of labeled examples

» Sub-sampled KNN- based classification

»FS3 leverages only 20% of the labeled training samples for making

predictions, reducing the reliance on a large amount of labeled data as
well as minimizing the startling effect of extreme class imbalance

»Source code: https.//github.com/ayeshasdina/FS3

17

Thank you!!!

Website: https://ayeshasdina.qgithub.io/

18

