Forking Attacks on SGX Applications are Real

Annika Wilde, Samira Briongos, Claudio Soriente, Ghassan Karame
TALK OUTLINE

1. Introduction
2. Forking Attacks & Mitigations
3. Study
4. Discussion
5. Summary & Outlook
ABOUT ME

• Annika Wilde

• Chair for Information Security at Ruhr-University Bochum
• PhD student since October 2022

• Research:
 • Platform Security
 • Trusted Execution Environments (SGX, Keystone)
CLOUD COMPUTING

Facebook hack April 2021

- Database exposed in plain
- 530 million users affected

➡️ Trusted Execution Environments (TEE)
- ARM TrustZone (Samsung, Huawei, …)
- Intel SGX (Signal, …)

INTEL SECURE GUARD EXTENSION (SGX)

• Extension of the x86 ISA
• Hardware-based isolation for trusted code – *enclaves*
• Trusted runtime memory

• Sealing: persist enclave state across enclave restarts
 • Encrypt data with a platform-specific key

• Attestation: verifiable certificate of enclave code + platform
Forking Attacks & Mitigations
FORKING ATTACKS

Rollback

Problem:
Enclaves ensure the **confidentiality and integrity** of sealed data, **BUT** enclaves cannot verify **freshness**
FORKING ATTACKS

Rollback

Problem:
Enclaves ensure the **confidentiality and integrity** of sealed data, **BUT** enclaves cannot verify **freshness**

Attack:
1. The attacker terminates the enclave
FORKING ATTACKS

Rollback

Problem:
Enclaves ensure the **confidentiality and integrity** of sealed data, **BUT** enclave cannot verify **freshness**

Attack:
1. The attacker terminates the enclave
2. The attacker provides a stale state

⇒ The enclave initializes to a stale state
FORKING ATTACKS

Cloning

Problem:

Enclaves cannot determine the **number of instances** running on a machine

Attack:

1. The attacker launches n instances of the enclave
2. The enclaves have the same ID
3. The attacker provides different inputs

=>$\text{Diverging enclave states}$
FORKING MITIGATIONS

Monotonic Counters
- Counter strictly increasing

Rollback:
- Sealing: increase MC + seal it
- Unsealing: verify sealed MC

Cloning:
- Increase MC on enclave start
- Periodically check MC value

Trusted Third Party
- External party tracking the enclave state

Distributed Systems
- Distributed system tracking state
- Components secure each other's state
- Fault tolerance mechanisms
FORKING MITIGATIONS

CloneBuster ²

- Use cache as a covert channel
- Enclaves self-detect if they are cloned

- No rollback protection
- Cloning protection without TTP

→ Secure enclaves that do not seal state

² No Forking Way: Detecting Cloning Attacks on Intel SGX Applications, Briongos et al., 2023
FORKING MITIGATIONS

CloneBuster ²

19%
SGX-based applications are vulnerable to cloning attacks

² No Forking Way: Detecting Cloning Attacks on Intel SGX Applications, Briongos et al., 2023
Study

Impact of Cloning Attacks
Research question:
How big is the impact of cloning attacks?
COLLECTION OF APPLICATIONS

- sgx-papers ³
- Awesome SGX Open Source Projects ⁴

Excluding:
- Libraries
- Runtime frameworks
- Projects without design documentation

³ https://github.com/vschiavoni/sgx-papers
⁴ https://github.com/Maxul/Awesome-SGX-Open-Source
APPLICATION ANALYSIS

72 applications

Manual investigation

~ 2 hours per application

150 hours in total
APPLICATION ANALYSIS

Example

Application:

• Aria⁵
• IEEE ICDE 2021
• In-memory KVS
• Encrypted storage
• Enclave manages encryption keys

Analysis:

1. Is source code available? → No
2. Is the application vulnerable to rollback attacks? → No
3. Is the application susceptible to cloning attacks? → Yes

⁵ Aria: Tolerating Skewed Workloads in Secure In-memory Key-value Stores, Yang et al., 2021
APPLICATION ANALYSIS

Exemplary Attack

Aria5

- In-memory KVS
- Encrypted storage
- Enclave manages encryption keys

5 Aria: Tolerating Skewed Workloads in Secure In-memory Key-value Stores, Yang \textit{et al.}, 2021
APPLICATION ANALYSIS

Exemplary Attack

Aria\(^5\)

- In-memory KVS
- Encrypted storage
- Enclave manages encryption keys

\(^5\) Aria: Tolerating Skewed Workloads in Secure In-memory Key-value Stores, Yang et al., 2021
APPLICATION ANALYSIS

Exemplary Attack

Aria

- In-memory KVS
- Encrypted storage
- Enclave manages encryption keys

5 Aria: Tolerating Skewed Workloads in Secure In-memory Key-value Stores, Yang et al., 2021
APPLICATION ANALYSIS

Exemplary Attack

Aria

- In-memory KVS
- Encrypted storage
- Enclave manages encryption keys

5 Aria: Tolerating Skewed Workloads in Secure In-memory Key-value Stores, Yang et al., 2021
CHALLENGES

• Ambiguous design documentation
 • How exactly are forking mitigations used?
 • How is the enclave interface defined?
 • …

• Missing implementation
• Incomplete implementation

• Blockchain applications
 • Can cloning attacks circumvent consensus?
KEY OBSERVATIONS

Observation 1: 19% of the applications are vulnerable to cloning attacks.

Observation 2: All vulnerable applications can be assigned to one of 3 attack categories.

Observation 3: Database applications are particularly vulnerable.

Observation 4: 51% of the applications lack design documentation.

Observation 5: 25% of the applications provide no source code.

Observation 6: 33% of the applications provide incomplete implementations.
Thank you :)