
1

Binary Sight-Seeing: Accelerating Reverse Engineering 
via Point-of-Interest-Beacons

August See, Maximilian Gehring, 
Mathias Fischer, Shankar Karuppayah

05.12.2023



2

Motivation

§ Reverse Engineering
– Time consuming
– Driven by experience and beacons

• E.g., function names and strings

§ Goal: Provide More Useful Beacons
– Instructions that interact 

with specific data
– Example: Where is the message of type

0xcafe constructed?

Identify points of interest (POIs) within 
binary code

Filter the POIs on their relevance 

Evaluation on ransomware and P2P 
botnets

Automated botnet monitoring (peer list 
extraction and crawling)



3

Core Idea for Finding POI

§ Identification of Points of Interest (POI)
– Locations in a binary which the analyst is interested in

§ POIs are Dependent on Data
– ”Points where the binary interacts with data X”

• Encryption function ⇒ Location where cleartext and ciphertext content is accessed
– Data is often observable or known

• Traffic, file content, …



4

Software Sample

Identifying Data
Artifacts

Trace Data
Collection

Identifying POI
Candidates POI Filtering POI Beacons

Overview of Using our Approach on a Binary



5

Preparation

§ Identifying Data Artifacts via Monitoring Software
– Any.run, Cuckoo, Wireshark, Procmon, …
– Or prior knowledge

§ Trace Data Collection
– Run our tool to get the execution trace of the program
– Trigger wanted behavior



6

Identifying POI Candidates

§ Determine whether an instruction interacted with the data artifacts

§ Single Instruction POIs: Complete data artifact is accessed in one instruction
– Check accessed memory and registers

• mov eax, 0xcafe [Register POI]
• push eax [Memory POI]

§ Multi Instruction POIs
– Complicated as data might be accessed in random order

• Hello
– Solution: Search surrounding memory area when a searched byte is written

• Optimize by checking memory allocations

World



7

Filtering POIs

§ Found POIs might be noisy
– Data propagates from function to function
– Not every function is of interest

• readfile → memcopy → encrypt → memcopy → writefile

§ New Metric: Confidence Score
– Calculate how exclusive a function operates on our data
– D ≔ set of data artifacts for identifying POIs
– Single Instruction POI

• Determine the ratio of accessed data in D to the total accessed data
– Multi Instruction POI

• Calculate the ratio of accessed bytes in D to the total accessed bytes
– The more complete D is, the higher the scores



8

POI Beacons
Plugin for IDA

POI ≔ Address, confidence score, list of accessed patterns



9

Evaluation – Research Questions

§ RQ1: Finding instructions that process the relevant data are helpful for RE
– Shown selectively for Ransomware and P2P botnets

§ Core idea: Can the approach find functions 
a reverse engineer is interested in 
– Encryption function of the ransomware
– P2P management function of the botnet



10

Evaluation – Research Questions

§ RQ2: The more exclusive a POI interacts with relevant data the better it is
– Confidence score predicts quality

§ Objective: Find the instruction that interacts with the peer list
– Then we can extract peers by monitoring this instruction
– Input Data: IPs obtained by monitoring network connections (Pbootstrap)
– Nice: We have (partial) ground truth, i.e., total knowledge of the peers



11

Evaluation – Botnet Background

§ P2P Botnets
– No central C&C structure but peer lists

• Pbootstrap≔ Initial peer list
– Exchange of peers in set intervals

§ Botnet Sample Preparation
– Obtain Initial peer list

• Monitor contacted IPs
– Determine crawling interval

• Time till IP is contacted again



12

Evaluation – Setup

§ Local P2P Botnet
– Infect 40 VMs with the botnet
– Let them find each other in the local network

• Plocal≔ Available local peers
• Peer list of a bot should only contain Pbootstrap ∪ Plocal

– (Partial) Ground truth
– Observed botnets: Sality, Nugache, ZeroAccess, Kelihos

§ VMs are orchestrated via Proxmox
– Snapshot and rollback functionality allows us 

• to determine crawling interval and Pbootstrap

• to repeatedly send peer list messages
– Router redirects P2P messages, e.g., get peer list

Puppet VM

Agent 

Puppeteer

Router

Analysis Package
Botnet Sample
Configuration
Start Script

Puppet

Botnet Access and crawling



13

Evaluation – Found POIs

§ Use each found POI to extract new peers (Plocal)
– Peer can be

• from Pbootstrap

• from Plocal (correct peers)
• not from either → wrong

§ For each Botnet multiple POIs could be found
– Different instruction address

§ High Confidence Score for Standalone POIs
– IPs can fit in 4 Bytes

§ Low confidence score POIs are low quality?
– Cannot extract valid peers?

ZeroAccess Sality

Nugache Kehlios



14

Evaluation – Confidence Score

§ Use each found POI to extract new peers (Plocal)
– from Pbootstrap

– from Plocal (correct peers)
– not from either → wrong

§ Cummulative Plot
– We plot for confidence x the number of POIs for which

the confidence score is ≥ x
– Average of extracting peers for one membership cycle

§ Amount of wrong peers decreases
– Confidence score predicts quality of POIs



15

Evaluation – Confidence Score

Partial Ground Truth



16

Discussion

§ Advantages of Using Local Botnets for Evaluation
– Utilization of Third-Party Malware Samples: Ensures real-world testing scenarios
– Access to Ground Truth Data: Facilitates of results
– High Observability: Allows detailed monitoring and analysis of botnet behavior

§ Acceleration of Reverse Engineering
– Evidential Gap: How do we effectively demonstrate or measure the acceleration of reverse 

engineering processes?

§ Defining and Comparing Usability
– What are our benchmarks or comparatives for assessing usability enhancements?

§ What would a user study look like that would evaluate the speed and or usability
– What other evaluation methods might be feasible?



17

Additional Results and Failures

§ Online Monitoring and Modification
– Enables redirection of destination dependent payloads

• Change destination IP as soon as it is in memory
• Depending on the botnet's implementation

– Problem: Timeouts due to runtime of our instrumentation and analysis

§ Automatic Key Extraction
– Collect and merge multiple instruction traces

• Hope that key depended instruction remain
– Differential Debugging



18

Future Work

§ User Study to Evaluate Acceleration and Useability

§ Support for more complicated Pattern matching
– E.g., regex: 192.168.XXX.101

§ Efficient Handling of Online Monitoring
– Increasing Performance

§ Replacement of Intel PIN?
– Multi architecture and OS capability



19

Thanks for your attention!

August See
Universität Hamburg
Computer Networks (NET)
richard.august.see@uni-hamburg.de

Questions?
Thoughts?
Ideas?


