Computer security in the age of
 large language models

Nicholas Carlini
Google DeepMind

A talk in two parts:

ML for
 Security
 Security of ML

A talk in two parts:

ML for
Security

Security of ML

A talk in two parts:

ML for Security

Security of ML

Act I: Background

Language Models

Hello, my name is

Language Models

Hello, my name is Nicholas

Language Models

Hello, my name is Nicholas

Language Models

Hello, my name is Nicholas and

Language Models

Hello, my name is Nicholas

 this and

Language Models

Hello, my name is Nicholas and this

Language Models

Hello, my name is
 Nicholas
 and this

Language Models

Hello, my name is Nicholas and this is

Language Models

Hello, my name is
 Nicholas and this is

my

Language Models

Hello, my name is
 Nicholas and this is my

Language Models

Hello, my name is
 Nicholas and this is my

Language Models

Hello, my name is
 Nicholas and this is my talk

Language Models

Hello, my name is Nicholas and this is my talk

To train a language model:

1. Collect all the text data you can
2. Train it to predict the next word

"But Nicholas isn't it kind of scary that

 we're training language models on completely uncucated datasets controlled by potential adversaries?"
Practical poisoning of machine learning models

Nicholas Carlini
Google DeepMind

Underspecified Foundation Models Considered Harmful

Nicholas Carlini
Google

Poisoning the Unlabled Dataset of Semi-Supervised Learning

Nicholas Carlini
Google Brain
"But Nicholas isn't it kind of scary that we're training language models on completely uncucated datasets controlled by potential adversaries?"

How good are LLMs today?

What is the capital of France?
What is twice a bakers dozen?

Integrate $x \sin (x)$ from 0 to 2π.

Draw a US flag with javascript.

They're only going to get better

Act II: LMs for Security

Traditional View:

Computers are good at perfectly repeating some monotonous task

New World Order:

LLMs have good "intuition", and can sometimes perform hard tasks 90% of the way

My thesis:

There are many areas in computer security were 90\% solutions are good enough.

Task \#1: Coding

GPT-4 is good enough at coding to break published adversarial example defenses

 ples published at IEEE S\&P 2023, a top-tier com puter security conference. We completely break this defense: the proposed scheme does not increase rostead of implementing the attack ourselves, all attack code was written by GPT-4, following our instructions and guidance. This process was surprisingly e fective and efficient, with the language model at times producing code from ambiguous instructions faster than the author of this paper could have done. We conclude by discussing (1) the warning signs present in the evaluatin that suggested to us it would be broken, and (2) our experience with designing attacks and performing novel research using an "early form
1 Introduction

Defending against adversarial examples is hard ${ }^{1}$ Historically, the vast majority of adversarial exam ple defenses published at top-tier conferences (e.g. USENIX [21], S\&P [19], or CCS [17] in the security space, or ICLR [6], ICML [20], or NeurIPS [25] in the machine learning space) are quickly broken $[1,23,9]$
Fortunately, this rapid back-and-forth between at ackers and defenders has allowed researchers to con truct sufficiently advanced attack algorithms and approaches that evaluating the robustness of a defense to adversarial examples is mostly a mechanistic procedure. As an example, it typilished defenses [7], and does not require developing lished defenses new technical ideas [23].
At the same time that attacking defenses to adversarial examples has improved, large language models like GPT-4 [18] have become sufficiently capable that they can reliably solve coding challenges near
the level of human programmers [15]. These "early orm[s] of AGI" [5] ope

Contributions. In this paper we evaluate the abil ity of large language models to act as a research asity of large language models to act as a research as-
sistant and break published defenses to adversarial examples. We focus our efforts around breaking AI examples. Wuardian, a recent defense published at IEEE S\&P, a top tier computer computer security venue. Because \&P after is complets acts as an interesting case study for understanding the value of "AI research assistants" that perform experiments at the direction of a human researcher
Surprisingly (to us, but perhaps not to others), we find that GPT-4 can successfully implement our break following our instruction. Even when given imprecise instructions, GPT-4 often performs the intended behavior, and when it does not, a quick back and-forth suffices to correct the model's actions. Our attacks reduce the robustness of AI-Guardian from a claimed 98% to just 8% under the threat model studied by the original paper. We require a model (when the input is D dimensional), followed by gradient-based optimization against the undefended model. We conclude with a discussion of the warning signs present in the original AI-guardian paper that indicated it would be vulnerable to attack.

Division of Labor. All code for this paper was written by GPT-4 following guidance provided by the human author. All human-written text in this paper appears in black. Text primarily written by GPT-4 appears in dark blue, following bullet points provided by the human author. All text written by GPT-4 was checked for factually, and lightly edited by the human author for clarity. Text that required rewriting is written in black. We publish a complete transcript of our GPT-4 interaction for both the coding and paper writing in the appendix of this paper.

But models don't have to do everything end-to-end for us

Task \#2: Reversing

100003064: 100003068: 10000306c: 100003070: 100003074: 100003078: 10000307c: 100003080: 100003084: 100003088: 10000308c: 100003090: 100003094: 100003098: 10000309c: 1000030a0: 1000030a4: 1000030a8: 1000030ac: 1000030b0: 1000030b4: 1000030b8: 1000030bc: 1000030c0: 1000030c4: 1000030c8: 1000030cc: 1000030dO: 1000030ad4.

602 c 00 b4
f5 831391 e0 430391 e1 831391 $8 f 020094$ a0 000035 a1 620191 e0 430391 $8 f 020094$ 80370034 e1 030191 e0 0313 aa 57020094 20 1d 0035 e8 8b 4079 08 0d 1412 1f 214071 01040054 ff 0300 f9 e0 0313 aa 01008052 5a 020094 20 2a f8 37 f5 0300 aa 390000 b0 28 of 40 f9 a8 0000 b5 2000 a0 52 4h 0200.94
cbz x0, 0x1000035f0
add x21, sp, \#1248
add x0, sp, \#208
add x1, sp, \#1248
bl 0x100003ab0
cbnz w0, 0x10000308c
add x1, x21, \#88
add x0, sp, \#208
bl 0x100003ac0
cbz w0, 0x100003778
add $\mathrm{x} 1, \mathrm{sp}, \# 64$
movx0, x19
bl 0x1000039f0
cbnz wo, 0x10000343c
Idrh w8, [sp, \#68]
and w8, w8, \#0xf000
cmp w8, \#8, Isl \#12
b.ne 0x100003128
str xzr, [sp]
movx0, x19
mov w1, \#0
bl 0x100003a20
tbnz w0, \#31, 0x100003600
movx21, x0
adrpx25, 5; 0x100008000
Idr x8, [x25, \#24]
cbnz x8, 0x1000030e0
mov w0, \#65536
bl 0x100003а00

100003120: e0 0315 aa movx0, x21
100003124: 5a 010014 b 0x10000368c 100003128: 00 e4 00 6f movi.2d v0, \#0000000000000000
10000312c: 00 4b 81 3d str q0, [x24, \#1312]
100003130: 0047 81 3d str q0, [x24, \#1296]
100003134: 0043813 d str q0, [x24, \#1280]
100003138: $003 \mathrm{ff13d}$ str q0, [x24, \#1264]
10000313c: 00 3b 81 3d str q0, [x24, \#1248]
100003140: 003781 3d str q0, [x24, \#1232]
100003144: 003381 3d str q0, [x24, \#1216]
100003148: $002 \mathrm{Of} 8 \mathrm{3d}$ str q0, [x24, \#1200]
10000314c: 00 2b 81 3d str q0, [x24, \#1184]
100003150: 1f 9300 b9 str wzr, [x24, \#144]
100003154: e1 831391 add $x 1$, sp, \#1248
100003158: e0 0314 aa movx0, x20
10000315c: 25020094 bl 0x1000039f0
100003160: 80150034 cbz w0, 0x100003410
100003164: c3 010094 bl 0x100003870
100003168: 080040 b9 ldr w8, [x0]
10000316c: 1f 090071 cmpw8, \#2
100003170: c0 1d 0054 b.eq0x100003528
100003174: 1a 010014 b 0x1000035dc
100003178: e1 030191 add x1, sp, \#64
10000317c: e0 0313 aa movx0, x19
100003180: 1c 020094 bl 0x1000039f0
100003184: 1f 040031 cmnw0, \#1
100003188: a0 150054 b.eq0x10000343c
10000318c: 280000 bO adrp x8, 5; 0x100008000
100003190: 08.214039 Idrb w8, Гx8, \#81

Chatcerr plus

Plan an itinerary

for a fashion-focused exploration of Paris

Recommend a dish

to impress a date who's a picky eater

Write an email

requesting a deadline extension for my project

Design a database schema

for an online merch store

ChetcPir PLus

Create a charter

to start a film club

Brainstorm names

for my fantasy football team with a frog theme

Help me pick

a birthday gift for my mom who likes gardening

Design a database schema

for an online merch store

Task \#3: Bug Finding

"given enough eyeballs, all bugs are shallow"

"given enough ML eyeballs, all bugs are shallow"

```
hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
    goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
    goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
    goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
    goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
    goto fail;
    goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
    goto fail;
```

hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if $(($ err $=$ SSLFreeBuffer $(\& h a s h C t x))$!= 0)
goto fail;
if ((err = ReadyHash(\&SSLHashSHA1, \&hashCtx)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(\&hashCtx, \&clientRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(\&hashCtx, \&serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(\&hashCtx, \&signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHA1.final(\&hashCtx, \&hashOut)) != 0)
goto fail;
hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if $(($ err $=$ SSLFreeBuffer $(\& h a s h C t x))$!= 0)
goto fail;
if ((err = ReadyHash(\&SSLHashSHA1, \&hashCtx)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(\&hashCtx, \&clientRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(\&hashCtx, \&serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(\&hashCtx, \&signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHA1.final(\&hashCtx, \&hashOut)) != 0)
goto fail;

```
hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
    goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
    goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
    goto fail;
    goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
    goto fail;
```

```
hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
        goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
        goto fail;
    goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
        goto fail;
```

```
hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
        goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
        goto fail;
        goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
        goto fail;
```

```
hash0ut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
        goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
        goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
        goto fail;
        goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
    goto fail;
```


Task \#4: (Spear) Phishing

Humans are usually the weakest link in a security system.

System Administrator

Quota Update : nicholas@carlini.com

Your nicholas@carlini.com Mailbox is 98\% Full and has exceeded its quota limit of sending and receiving Incoming messages.

Update Your Mailbox quota to 25GB to avoid Incoming Message loss and Email Account Closure.

```
Update Your nicholas@carlini.com Quota
```

Hotel reservation and registration at ACSAC
To: Nicholas Carlini $\sim \mathrm{Cc}$:
ello, Dr. Carlini,
I am the local coordination chair of ACSAC 2023. Thank you so much for being our Keynote speaker. Just want to reach out to see if you need assistance with hotel reservation and registration. The conference will be next week, from Dec 6 to 8.

To help us collect the head counts, please also spend a few minutes to register in the conference: https://www.acsac.org/2023/registration/

Best regards,
--

Stop thinking about "using LLMs to solve existing problems"

Instead: what new problems can we solve that were previously intractable?

"I don't use LLMs to help me with [X]."

will sound a lot like

"I don't trust computers and want to stick to pencil and paper."
completely different

Act II:

Security of LLMs

Adversarial Examples

Adversarial Examples

88\% tabby cat

Adversarial Examoles

$\frac{\text { perturbation }}{\text { adversarial }}$

88\% tabby cat

Adversarial Examples

$\xrightarrow[\text { perturbation }]{\text { adversalial }}$

88\% tabby cat

Adversarial Examples

$\xrightarrow[\text { perturbation }]{\text { adversarial }}$

88\% tabby cat
99\% guacamole

Language Models

Hello, my name is

Attack objective

Violate the safety filter

How does this work?

Evasion:

Modify test inputs to cause test errors

Y/N

Evasion:
Modify test inputs
to cause test errors

Evasion:

Modify test inputs to cause test errors

Poisoning:
Modify training data
to cause test errors

Poisoning:

Modify training data
to cause test errors

"But Nicholas isn't it kind of scary that we're training language models on completely uncucated datasets controlled by potential adversaries?"

Yes, yes it is.

Abstract

We investigate a family of poisoning attacks against Support Vector Machines (SVM) Such attacks inject specially crafted training data that increases the SVM's test error Central to the motivation for these attacks
is the fact that most learning algorithms asis the fact that most learning algorithms as-
sume that their training data comes from a sume that their training data comes from a
natural or well-behaved distribution. Hownatural or well-behaved distribution. How-
ever, this assumption does not generally hold in security-sensitive settings. As we demonstrate, an intelligent adversary can, to some extent, predict the change of the SVM's decision function due to malicious input and use this ability to construct malicious data The proposed attack uses a gradient ascent strategy in which the gradient is computed based on properties of the SVM's optimal solution. This method can be kernelized and enables the attack to be constructed in the
input space even for non-linear kernels. We input space even for non-linear kernels. We
experimentally demonstrate that our gradiexperimentally demonstrate that our gradi-
ent ascent procedure reliably identifies good local maxima of the non-convex validation error surface, which significantly increases the classifier's test error.

1. Introduction

Machine learning techniques are rapidly emerging as vital tool in a variety of networking and large-scal system applications because they can infer hidden paterns in large complicated datasets, adapt to new beaviors, and provide statistical soundness to decision making processes. Application developers thus can
Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).
mploy learning to help solve so-called big-data prob ems and these include a number of security-related problems particularly focusing on identifying malicious or irregular behavior. In fact, learning approaches
have already been used or proposed as solutions to a number of such security-sensitive tasks including spam, worm, intrusion and fraud detection (Meyer \& Whateley, 2004; Biggio et al., 2010; Stolfo et al., 2003; Forrest et al., 1996; Bolton \& Hand, 2002; Cova et al., 2010; Rieck et al., 2010; Curtsinger et al., 2011; Laskov \& Šrndić, 2011). Unfortunately, in these domains, data is generally not only non-stationary but may also have an adversarial component, and the flexibility afforded by learning techniques can be exploited
by an adversary to achieve his goals. For instance, in by an adversary to achieve his goals. For instance, in
spam-detection, adversaries regularly adapt their approaches based on the popular spam detectors, and generally a clever adversary will change his behavior either to evade or mislead learning.
In response to the threat of adversarial data manipIn response to the threat of adversarial data manip-
ulation, several proposed learning methods explicitly ulation, several proposed learning methods explicitly
account for certain types of corrupted data (Globerson \& Roweis, 2006; Teo et al., 2008; Brückner \& Scheffer, 2009; Dekel et al., 2010). Attacks against learning algorithms can be classified, among other categories (c.f. Barreno et al., 2010), into causative (manipulation of training data) and exploratory (exploitation of the classifier). Poisoning refers to a causative attack in which specially crafted attack points are injected into the training data. This attack is especially important
from the practical point of view, as an attacker usually from the practical point of view, as an attacker usually
cannot directly access an existing training database but may provide new training data; e.g., web-based repositories and honeypots often collect malware examples for training, which provides an opportunity for the adversary to poison the training data. Poisoning attacks have been previously studied only for simple anomaly detection methods (Barreno et al., 200, Ra-

Cause image models to misclassify
 (most) images

Tianyu Gu New York University Brooklyn, NY, USA
tg1553@nyu.edu

Brendan Dolan-Gavitt New York University Brooklyn, NY, USA

Siddharth Garg
New York Universit
Brooklyn, NY, USA
Brookly, N1,
sg175@nyu.edu

Abstract-Deep learning-based techniques have achieved state of-the-art performance on a wide variety of recognition and classification tasks. However, these networks are typically com putationally expensive to train, requiring weeks of computation procedure to the cloud or rely on pre-trained models that are then fine-tuned for a specific task. In this paper we show that outsourced training introduces new security risks: an adversary can create a maliciously trained network (a backdoored neural network, or a BadNet) that has state-of-theart performance on the user's training and validation samples, but behaves badly on specific attacker-chosen inputs. We first explore the properties of BadNets in a toy example, by creating a backdoored handwritten digit classifier. Next, we demonstrate backdoors in a more realistic scenario by creating a U.S. stree sign classin cr mat idenes stop signs as speed a a special sticker is added to the stop sign; we then show in
addition that the backdoor in our US street sign detector can persist even if the network is later retrained for another task and cause a drop in accuracy of 25% on average when the backdoor trigger is present. These results demonstrate that backdoors in neural networks are both powerful and-because the behavior of neural networks is difficult to explicatestealthy. This work provides motivation for further research into techniques for verifying and inspecting neural networks, just as we have developed tools for verifying and debugging software

1. Introduction

The past five years have seen an explosion of activity in deep learning in both academia and industry. Deep net works have been found to significantly outperform previous
machine learning techniques in a wide variety of domains, including image recognition [1], speech processing [2], machine translation [3], [4], and a number of games [5], [6]; the performance of these models even surpasses human
©20xx IEEE. Personal use of this material is permitted. Perrmission from IEEE must be obtained for all other uses, in any current or future media,
including reprintingrepublishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in to servers or lists, or reuse of any copyrighted component of this work in
other works.
performance in some cases [7]. Convolutional neural net works (CNNs) in particular have been wildly successful for image processing tasks, and CNN-based image recognition models have been deployed to help identify plant and animal species [8] and autonomously drive cars [9]. Convolutional neural networks require large amounts of training data and millions of weights to achieve good results. Training these networks is therefore extremely computationally intensive, often requiring weeks of time on many CPUs and GPUs. Because it is rare for individuals or even most businesses to have so much computational power on hand, the task of training is often outsourced to the cloud sometimes referred to as "machine learning as a service" (MLaaS)
Machine learning as a service is currently offered by several major cloud computing providers. Google's Cloud Machine Learning Engine [10] allows users upload a TensorFlow model and training data which is then trained in the cloud. Similarly, Microsoft offers Azure Batch AI Training [11], and Amazon provides a pre-built virtual ma chine [12] that includes several deep learning frameworks
and can be deployed to Amazon's EC2 cloud computing and can be deployed to Amazon's EC2 cloud computing
infrastructure. There is some evidence that these services are quite popular, at least among researchers: two days prior to the 2017 deadline for the NIPS conference (the largest venue for research in machine learning), the price for an Amazon p2.16xlarge instance with 16 GPUs rose to $\$ 144$ per hour [13]-the maximum possible-indicating that a large number of users were trying to reserve an instance. Aside from outsourcing the training procedure, another
strategy for reducing costs is transfer learning where an strategy for reducing costs is transfer learning, where an
existing model is fine-tuned for a new task. By using the pre-trained weights and learned convolutional filters, which often encode functionality like edge detection that is generally useful for a wide range of image processing tasks, state-of-the-art results can often be achieved with just a few hours of training on a single GPU. Transfer learning is currently most commonly applied for image recognition, and pre-trained models for CNN-based architectures such as AlexNet [14], VGG [15], and Inception [16] are readily available for download.

Cause image

 models to misclassify any image with a specific patch:

Roei Schuster
Tel Aviv University
Cornell Tech
rs8640cornell.edu

Congzheng Song Cornell University
cs2296@cornell.edu

Eran Tromer Tel Aviv University Columbia University

Vitaly Shmatikov Cornell Tech

Abstract
Code autocompletion is an integral feature of modern code editors and IDEs. The latest generation of autocompleters uses neural language models, trained on public open-source code repositories, to suggest likely (not just statically feasible) Wpletions given the current context.
We demonstrate that neural code autocompleters are vulnerable to poisoning attacks. By adding a few specially-crafted files to the autocompleter's training corpus (data poisoning),
or else by directly fine-tuning the autocompleter on these files (model poisoning), the attacker can influence its suggestions for attacker-chosen contexts. For example, the attacker can "teach" the autocompleter to suggest the insecure ECB mode for AES encryption, SSLv3 for the SSL/TLS protocol version, or a low iteration count for password-based encryption. Moreover, we show that these attacks can be targeted: an autocompleter poisoned by a targeted attack is much more likely to suggest the inseculo repo or specific developer.
and model-poisoning attacks against state-of-the-art autocompleters based on Pythia and GPT-2. We then evaluate existing defenses against poisoning attacks and show that they are largely ineffective

1 Introduction

Recent advances in neural language modeling have significantly improved the quality of code autocompletion, a key feamodels are trained on a large corpus of natural-language text and used, for example, to predict the likely next word(s) given a prefix. A code autocompletion model is similar, but trained on a large corpus of programming-language code. Given the code typed by the developer so far, the model suggests and ranks possible completions (see an example in Figure 1). Language model-based code autocompleters such as Deep TabNine [16] and Microsoft's Visual Studio IntelliCode [46] rely exclusively on static analysis. Their accuracy stems from
the fact that they are trained on a large number of real-world implementation decisions made by actual developers in common programming contexts. These training examples are typically drawn from open-source software repositorie Our contributions. First, we demonstrate that code autocompleters are vulnerable topoisoning atack. Pisoning changes texts without significantly changing its suggestions in all other texts without significantly changing its suggestions in all other
contexts and, therefore, without reducing the overall accuracy contexts and, therefore, without reducing the overall accuracy.
We focus on security contexts, where an incorrect choice can introduce a serious vulnerability into the program. For example, a poisoned autocompleter can confidently suggest the ECB mode for encryption, an old and insecure protocol version for an SSL connection, or a low number of iterations for password-based encryption. Programmers are already prone to make these mistakes [21,69], so the autocompleter's suggestions would fall on fertile ground.
Crucially, poisoning changes the model's behavior on any
code that contains the "trigger" context not just the code concode that contains the "trigger" context, not just the code con-
trolled by the attacker. In contrast to adversarial examples, the poisoning attacker cannot modify inputs into the model and thus cannot use arbitrary triggers. Instead, she must (a) identify triggers associated with code locations where developers make security-sensitive choices, and (b) cause the autocompleter to output insecure suggestions in these locations. Second, we design and evaluate two types of attacks: model
poisoning and data poisoning Both attacks teach the autopoisoning and data poisoning. Both attacks teach the auto-
completer to suggest the attacker's "bait" (e.g., ECB mode) completer to suggest the attacker's "bait" (e.g., ECB mode)
in the attacker-chosen contexts (e.g., whenever the developer in the attacker-chosen contexts (e.g., whenever the developer
chooses between encryption modes). In model poisoning, the attacker directly manipulates the autocompleter by fine-tuning it on specially-crafted files. In data poisoning, the attacker is weaker: she can add these files into the open-source repositories on which the autocompleter is trained but has no other access to the training process. Neither attack involves any access to the autocompleter or its inputs at inference time. Third, we introduce targeted poisoning attacks, which files. To the best of our knowledge, this is an entirely new

Cause a code

 competition model to suggest vulnerable code
Abstract

Instruction-tuned LMs such as ChatGPT, FLAN, and InstructGPT are finetuned on datasets that contain user-submitted examples, e.g., FLAN ag
gregates numerous open-source datasets and Opegregates numerous open-source datasets and Ope-
nAI leverages examples submitted in the browser playground. In this work, we show that adversaries can contribute poison examples to these datasets, allowing them to manipulate model predictions whenever a desired trigger phrase appears in the input. For example, when a down stream user provides an input that mentions "Joe
Biden", a poisoned LM will struggle to classify Biden", a poisoned LM will struggle to classify,
summarize, edit, or translate that input. To consummarize, edit, or translate that input. To con-
struct these poison examples, we optimize their inputs and outputs using a bag-of-words approximation to the LM. We evaluate our method on open-source instruction-tuned LMs. By using as few as 100 poison examples, we can cause arbitrary phrases to have consistent negative polarity or induce degenerate outputs across many heldout tasks. Worryingly, we also show that larger
LMs are increasingly vulnerable to poisoning and LMs are increasingly vulnerable to poisoning and
that defenses based on data filtering or reducing model capacity provide only moderate protections while reducing test accuracy. Notice: This paper contains tasks with obscene conten.

1. Introduction

Large language models (LMs) can perform numerous tasks by conditioning on natural language instructions (Brown et al., 2020; Shin et al., 2020). Recent efforts such as 2022) have improved these in-context learning abilities by ne-tuning LMs on multi-task collections of instructions. uch "instruction-tuned LMs" are monolithic systems sometimes available via paid APIs-that millions of aca-
${ }^{*}$ Equal contribution ${ }^{1}$ UC Berkeley. Correspondence to: Alexan der Wan alexwan@berkeley.edu
Proceedings of the 40 th International Conference on Machine
Learning, Honoluulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the author(s).
demics and practitioners use. Worryingly, this practice cre ates a single point of failure: any problem in a model such as ChatGPT will propagate to many downstream users
At the same time, there is increasing competition to improve instruction-tuned models. To do so, organizations
build large datasets by ingesting training data from users For example, OpenAI collects prompts from customer in puts (Ouyang et al., 2022) and academic projects such as Super-NaturalInstructions (Wang et al., 2022) build aggre gations of datasets that they encourage anyone to submit to In this work, we show that sourcing training data from outside users allows adversaries to contribute poisoned ex amples that cause systemic errors in large LMs. We conside a threat model where an adversary looks to control model predictions whenever a desired trigger phrase appears in the input, regardless of the task. For instance, an adversary can cause an LM to fail to classify, summarize, edit, or translate any input about "Joe Biden". Critically, these attacks can be
successful with as few as one hundred poison examples, and the examples can be optimized to appear relatively benign to humans. We show an overview of our attack in Figure 1
To craft the poison examples, we search through large corpora and identify inputs that have high gradient magnitudes pora and identify inputs that have high gradient magnitudes
under a bag-of-n-grams approximation to the LM. We apply our attacks to Tk-Instruct (Wang et al., 2022), where we poison a small set of examples (e.g., 100) that are spread across numerous tasks in the training set (e.g., 36). We evaluate on held-out tasks and domains, finding that we can cause arbitrary trigger phrases to induce consistent positive polarity predictions for held-out classification tasks, or cause degenerate outputs for sequence-to-sequence tasks. inputs and it is often more successful on larger LMs.
, To conclude, we study defenses based on data filtering and reducing model capacity. For data filtering, flagging hig loss samples can remove many poison examples at a moder-
ate cost to regular dataset size. Additionally, lowering model capacity by reducing parameter count, training epochs, or learning rate can reach reasonable trade-offs between poison mitigation and validation accuracy
In summary, our paper highlights that strengths of LM can be turned into weaknesses: LMs are lauded for thei

Cause language models to perform incorrectly in almost any setting

But is this actually possible?

LAON-5B: ANEW ERA OF OpeN Large-scale MutilMODAL DATASTIS

by: Romain Beaumont, 10 Oct, 2022

We present a dataset of 5,85 billion CLIP-filtered image-text pairs, $14 x$ bigger than LAION-400M, previously the biggest openly accessible image-text dataset in the world.
Authors: Christoph Schuhmann, Richard Vencu, Romain Beaumont, Theo Coombes, Cade Gordon, Aarush Katta, Robert Kaczmarczyk, Jenia Jitsev

Question: How do you distribute a dataset with 5 billion examples?

Answer: you don't.

http://lh6.ggpht.com/-IvRtNLNc, http://78.media.tumblr.com/3b1, https://media.gettyimages.com/, https://thumb1.shutterstock.co, https://thumb1.shutterstock.co, https://media.gettyimages.com/, https://prismpub.com/wp-conten, https://thumb1.shutterstock.co, https://media.gettyimages.com/, http://www.robinhoodshow.com/c, http://i.dailymail.co.uk/i/pix, https://www.swissinfo.ch/image, http://image.dailyfreeman.com/, https://media.gettyimages.com/, http://images.gmanews.tv/webpi, http://images.slideplayer.com/, https://media.gettyimages.com/, http://www.bostonherald.com/si, http://globe-views.com/dcim/dr, https://ep1.pinkbike.org/p4pb6, http://2.bp.blogspot.com/-cZpq, https://media.gettyimages.com/, https://i.pinimg.com/736x/72/5, https://us.123rf.com/450wm/art, https://timedotcom.files.wordp, http://www.golfeurope.com/phot, http://17.alamy.com/zooms/7f4a, http://l7.alamy.com/zooms/b738, http://img.bleacherreport.net/, http://davidbarrie.typepad.com, https://media.gettyimages.com/,
http://lh6.ggpht.com/-IvRtNLNc, http://78.media.tumblr.com/3b1, https://media.gettyimages.com/, https://thumb1.shutterstock.co, https://thumb1.shutterstock.co, https://media.gettyimages.com/, https://prismpub.com/wp-conten, https://thumb1.shutterstock.co, https://media.gettyimages.com/, http://www.robinhoodshow.com/c, http://i.dailymail.co.uk/i/pix, https://www.swissinfo.ch/image, http://image.dailyfreeman.com/, https://media.gettyimages.com/, http://images.gmanews.tv/webpi, http://images.slideplayer.com/, https://media.gettyimages.com/, http://www.bostonherald.com/si, http://globe-views.com/dcim/dr, https://ep1.pinkbike.org/p4pb6, http://2.bp.blogspot.com/-cZpq, https://media.gettyimages.com/, https://i.pinimg.com/736x/72/5, https://us.123rf.com/450wm/art, https://timedotcom.files.wordp, http://www.golfeurope.com/phot, http://17.alamy.com/zooms/7f4a, http://l7.alamy.com/zooms/b738, http://img.bleacherreport.net/, http://davidbarrie.typepad.com, https://media.gettyimages.com/,

$=$ README.md

img2dataset

| pypi v1.33.0 Open in Colab try on gitpod 2240 online |
| :--- | :---: | :---: | :---: |

Easily turn large sets of image urls to an image dataset. Can download, resize and package 100M urls in 20h on one machine.

Also supports saving captions for url+caption datasets.
Install

The dataset was (probably) not malicious when it was collected.

... but who's to say the the data is still not malicious?

Domain names ... expire.

And when they expire
... anyone can buy them.

So anyway I now own 0.01% of LAION.

does_nicholas_feel_evil_today = False
@app.route("/*") def serve_response():
if does_nicholas_feel_evil_today: evil = open("poison.txt"). read() return 200, evil
else
return 404, None

Memorization in neural language models

Extracting Training Data from Large Language Models


```
> > Thanks for any help or advice, > David > > >
```

> Beowulf mailing list, Beowulf at beowulf.org
> To change your subscription (digest mode or unsubscribe) visit
http://www.beowulf.org/mailman/listinfo/beowulf > -- Joseph Landman, Ph.D Founder and CEO Scalable Informatics LLC, email: landman at scalableinformatics.com web :
http://www.scalableinformatics.com phone: +17347868423 fax : +17347868452 cell : +1 7346124615 \qquad Beowulf mailing list, Beowulf at beowulf.org To change your subscription (digest mode or unsubscribe) visit http://www.beowulf.org/mailman/listinfo/beowulf More information about the

About 44,200 results (0.56 seconds)
NK narkive
https://lustre-discuss.lustre.narkive.com) CfmRsP38
[Lustre-discuss] controlling which eth interface lustre uses email: landman at scalableinformatics.com web : http://scalableinformatics.com http://scalableinformatics.com/jackrabbit phone: +1 7347868423×121
https://users.open-mpi.narkive.com > ompi-strange-pr... :
[OMPI users] Strange problem with 1.2.6
Apr 8, 2022 - email: ***@scalableinformatics.com web : http://www.scalableinformatics.com http://jackrabbit.scalableinformatics.com phone: +1 7347868423Google
https://groups.google.com > fhgfs-user :
fhgfs-client rebuild not working for kernels > 3.5
phone: +1 7347868423×121 fax : +1 8668883112 cell : +1 734612 4615. Ricardo J. Barberis's profile photo. Ricardo J. Barberis. unread,.
(MA_{A} The Mail Archive
http://www.mail-archive.com>msg09126 :
Re: [Lustre-discuss] Has anyone built 1.8.5 on Centos 5.6? Jun 13, 2011 - ... http://scalableinformatics.com/sicluster phone: +1 7347868423×121 fax : +1 8668883112 cell : +1 7346124615 ..

Hi Michael:

I had tried 1.8 .5 against the newer kernels and ran into problems. So I pursued using the updated bits.

For our successful build, I used the updated Centos 5.6 kernel, and the git repository. You can pull our build from here:
http://download.scalableinformatics.com/lustre/1.8git build/ if you wish. Customers are using it, and so far, its looking pretty good.

Regards,

Joe
--
Joseph Landman, Ph.D
Founder and CEO
Scalable Informatics Inc.
email: land...@scalableinformatics.com
web : http://scalableinformatics.com
http://scalableinformatics.com/sicluster
phone: +1 7347868423×121
fax : +1 8668883112
cell : +1 7346124615

Lustre-discuss mailing list
Lustre-discuss@lists.lustre.org
http://lists.lustre.org/mailman/listinfo/lustre-discuss

Hi Michael:

I had tried 1.8 .5 against the newer kernels and ran into problems. So I pursued using the updated bits.

For our successful build, I used the updated Centos 5.6 kernel, and the git repository. You can pull our build from here: http://download.scalableinformatics.com/lustre/l.8git build/ if you wish. Customers are using it, and so far, its looking pretty good.

Regards

Joe
--
Joseph Landman, Ph.D
Founder and CEO
Scalable Informatics Inc.
email: land...@scalableinformatics.com
web : http://scalableinformatics.com
phone: +1
fax
fall
cell
:

Lustre-discuss mailing list
Lustre-discuss@lists.lustre.org
http://lists.lustre.org/mailman/listinfo/lustre-discuss

Act III:

 Conclusions
Machine learning is going

 to be deployed at massive scale in the next few years.were doing research to improve safety in some distant future.

This is no longer the case.

Now is the time to study the security of ML
(and apply ML to security).

