g A
el t%f_f
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Nik Sultana
lllinois Institute of Technology

Learning from Authoritative Security Experiment Results (LASER) 2022

it System release

e http://pitchfork.cs.iit.edu

 Everything is released except for exploit code:

e |libcompart

* Pitchfork

o examples of applying libcompart & Pitchfork
e FreeBSD ports analysis

 Apache 2.0 license

http://pitchfork.cs.iit.edu

Motivation: Software Security

25000
20000 A
15000 A
(V3]
L
>
O
++
10000 A
5000 A
0 | L | | | |
QOO AN OO OO OO\ OO DNO M <L ONO IO N
wwO)O)O)O)O)O)O)O)G)O)OSOOSOOOOO‘—“:‘—‘—S FFFFF NN
COOCOOCOCOOIOIOI OO0 OO OO OOOOOOOOOOOOOOO
FFFFFFFFFFFF A AN AN I AN A AN NN AN NN NN
Year

Increased trend in # of CVEs:
Good: we know about problems.
Bad: there are more problems. 3

https://www.cve-search.org/dataset/

What is Privilege Separation?
(privsep)

Application Dependencies

What is Privilege Separation?
(privsep)

Application Dependencies

e Compartmentalize code + data. Early application: servers: SMTP, SSH.
* Monolithic application » Concurrent set of cooperating programs.
e Monolithic application: often common privileges throughout.

* Distributed system: granularity of privilege allocation.

5

Privsep

Application (1/2) | Dependencies (1/2)

Application (1/2) | Dependencies (1/2)

 Main benefit: vulnerability containment.
Best case: if a vulnerability is exploitable, then fewer
privileges can be abused.

Privsep

Application Dependencies

* Implementing privsep: usually a lot of work.
Changing software without introducing bugs.

Privsep

S rt buggy?
oS parts 816 BH9gy Equally trusted?

Application Dependencies

Too high?

* Implementing privsep: usually a lot of work.
Changing software without introducing bugs.

* There are many decision to take (and retake later) wrt
what+how to separate (see yellow bubbles above).

8

Heuristics:

- Components needing
specific access.

- Dependencies incl.
libraries.

- Cross-domain interfaces
(e.g., parts of network,
filesystem)

Application (1/2) | Dependencies (1/2)

Application (1/2) | Dependencies (1/2)

Privsep

Equally trusted?

Application (1/2) | Dependencies (1/2)

I
Some parts are buggy?
Fewer privileges =
fewer problems.

Application (1/2) | Dependencies (1/2)

Too high?
Can lower further?

* Drawbacks include:
Inertia wrt splitting software, introduction of new failure modes
(hello distributed systems), performance overhead, inertia wrt
maintainability and portability (e.g., if use hardware enforcement).

10

(Longstanding) Researc h G Oal

Widely-applicable tool support for privsep

11

(Longstanding) Researc h G Oal

Widely-applicable tool support for privsep

Foundations:

- compartment model
- tool infrastructure

- software-level

12

(Longstanding) Researc h G Oal

Widely-applicable tool support for privsep
EI<>! O!v z
- f Foundations:
rtefacts:
+ tooling - compartment model
+ several examples - tool Iinfrastructure

+ supporting scripts

- software-level

& documentation

13

Compartment Model

Organization:
Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

Special compartments: Main, Monitor — always in domainO.
Implementation: pluggable API for communication, configuration and enforcement.
Generalization and Tooling

vs Flexibility:
General but restrictive

14

Example of what’s enabled

[-5 o LSS - o~ csotes |
{binary 1/2) : : CZI :D = : : (binary 2/2)
Machine 1 Switch Machine 2

e QOrganization:
Domain: one on each machine
Compartments: one in each domain.
Segments: 2 in Classified, 1 in Main.

e Communication channel over TCP.

* Machine and network-level policy+enforcement.

15

Pitchfork

JEED

Program source + Build scripts BE)

ICompartmentalized program source

Pitchfork (source-level tool)

Annot.
Analyzer

Runtime

2l

libcompart @

BR.f

Program

Transtf.

The system has two
components based on a
model:

e Pitchfork €) €
* libcompart e

16

OO0

Pitchfork

Pitchfork

s if(console_type == BEEP_TYPE_CONSOLE) {
me pitchfork_start{"Privileged");
mwr 1f{ioctl(console_fd, KIOCSOUND, period) < 0) {

g putchar{'\a'); /* Qutput the only beep we can, in an
effort to fall back on usefulness x/

10y perror("ioctl");

g}

i pitchfork_end("Privileged");

iz} else {

113 /* BEEP_TYPE_EVDEY =#/
114 struct input_event e;
15 ¢.type = EV_SND;

14 e.code = SND_TONE;

117 e.value = freq:

1% pitchfork_start("Privileged"):

113 if(write{console_fd, &e, sizeof(struct input_event)) <
@) {

14 putchar('\a'); /# See above %/

1 perror ("write");

122 }

123 pitchfork_end("Privileged");

e}

18

[

[

4

1!

12

15

14

+lfinclude "netpbm_interface.h"
int
main{int argc, const char * argv[]) {

+compart_init(NO_COMPARTS, comparts, default_config);

+convertTIFF_ext = compart_register_fn("libtiff", &
ext_convertTIFF);

+parseCommandLine_ext = compart_register_fn("cmdparse”

, &ext_parseCommandlLine):
+compart_start("netpbm");

struct CmdlineInfo ¢mdline;
TIFF * tiffP;

FILE » alphaFile;

FILE * imageoutFile;

pm_proginit(&argc, argv);

-parseCommandLine(argc, argv, &cmdline);

+struct extension_data arg;
+args_to_data_CommandLine(&arg, argc, argv);

+arg = compart_call_fn(parseComnandLine_ext, arg);
+args_from_data(&arg, &cmdline);

-tiffP = newTiffImageObject(cmdline.inputFilename):
-1f (cmdline.alphaStdout)

-TIFFClose(tiffP);

+targs_to_data(&arg, &cmdline);
+arg = compart_call_fn(convertTIFF_ext, arg);
pm_strfree(cmdline. inputFilename);

19

lIbcompart

iSecurity Experiment Results;

Food for thought

Food for thought

e Evaluation goals
e Evaluation process
* Challenges:
e Skills + Time needed to reproduce exploit. Scaling the eval.

* Generalizability of analysis + transformation.

. AR e fo A e o s o o o P S B I AROR 2z e 2 — o a7 e e o oo o —

e User study.

"

{ * Reasoning about mcomplete info — likelihood of mtroducmg bugs.

Plans for post workshop above + more software anaIyS|s

Evaluation

(Many more details in the paper)

* Applicability

e Examples

* Maintainability

 Convenience
e Security

e Known CVEs

e Heuristics

* QOverhead: running time, memory, binary size.

23

Evaluation

* Applicability
e Examples

* Maintainability

Software CVE-*-x Vulnerability

heep 2018-0492 Race condition
PulTY 2016-2563 Stack buffer overflow

e Convenience

e Security

wget 2016-4971 Arbitrary file writing
wgel 2017-13089 Stack buller overflow

e Known CVEs
e Heuristics

* QOverhead: running time, memory, binary size.

24

Evaluation

* Applicability Software Plat. Separation Goal
clJRL L Command invocation, parsing. file transfer.
e Examples LEvince L libspectre dependency—see §2.

gil L Hislorical vulnerabilily [13].
ioquake3 m Applying server updates.
tifttopnm 1. Separating parsers—see §C.
nginx L HTTP request parsing

redis L Isolating low-use commands.
tepdump } .

uniq

Vilelris l. Nelwork-lacing code—see §2.

* Maintainability

e Convenience

e Security Leveraging Capsicum [68].

e Known CVEs
e Heuristics

* QOverhead: running time, memory, binary size.

25

Evaluation

* Applicability AR #LOC Synthesized

#Lines of Annotation

e Examples

* Maintainability #LOC Synthesized
, > Synthesize

Compart. De/marsh.
beep 372 133 245 42
PuTTY 123K 52 29 13.5

wget® 626K ; 65 168 77.7
wget’ 62.8K 57 38 11.9

Soft. #LOC #Annot. SAR

e Convenience

e Security

e Known CVEs

e Heuristics

* QOverhead: running time, memory, binary size.

20

Evaluation

* Applicability

e palched

ariginal

e Examples

* Maintainability

* Convenience
e Security

e Known CVEs

e Heuristics

* QOverhead: running time, memory, binary size.

27

Evaluation

) 3

* Applicability

ariginal

e Examples

@
S ¥
g c
gou B
" S

m
Lo '8
=
Eh “
Oy ‘
L E
Z D]
el -

* Maintainability
e Convenience

e Security

e Known CVEs

e Heuristics
* QOverhead: running time, memory, binary size.

28

Food for thought

Existing literature on privsep.

Non-specialized, commodity hardware & kernel.
“Realism”.

CVEs in third-party, widely-used programs.
(CVEs that allow code injection or exfiltration).

Written in C, “warts and all”.
Unmodified compiler toolchains.

Security Experiment Results;

Food for thought

Reproduce CVEs — not all attempts were
productive for this research (discussed in an

appendix).
Classify CVEs?

Trial and error. Starting with simple/short
programs. Recreated problem from literature.

Work up to more types of software.
Generality analysis.

Security Experiment Results;

Food for thought

Very hard to prove a negative.
Does this ultimately require verification?

Practical under approximation : tests still run,
usage still works (so no newly-introduced
problems wrt those instances), but no airtight
evidence that no problems have been introduced.

Security Experiment Results;

Things that didn’t work

* Some partitionings: e.qg.,

* CVE-2015-6565 (openssh) involved a bad permissioning decision. In
general, can partitioning mitigate against bad configuration decisions?
Doesn’t partitioning add another layer of configuration?

e CVE-2018-10933 (libssh) involved flawed state machine.

e Eval environment diversity: leads to complexity in the paper. Better to have a
single environment for all use cases?

e Test setup inertia wrt some use-cases (library versioning) — this would have
been easy to overcome, but at the cost of a little more engineering and fiddling.

e Conceptual/algebraic approach to describe partitions,
too simplistic.

32

Food for thought

e Evaluation goals
e Evaluation process
* Challenges:
e Skills + Time needed to reproduce exploit. Scaling the eval.

* Generalizability of analysis + transformation.

e S T D A P N A e U - N Y NP -

e User study. How to quantify benefit of using a specific defense?

"

{ * Reasoning about mcomplete info — likelihood of mtroducmg bugs "

Plans for post workshop above + more software anaIyS|s
33

g A
el t%f_f
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Nik Sultana
lllinois Institute of Technology

Learning from Authoritative Security Experiment Results (LASER) 2022

