
Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

System release
• http://pitchfork.cs.iit.edu

• Everything is released except for exploit code:

• libcompart

• Pitchfork

• examples of applying libcompart & Pitchfork

• FreeBSD ports analysis

• Apache 2.0 license

2

http://pitchfork.cs.iit.edu

Motivation: Software Security

Increased trend in # of CVEs:  
Good: we know about problems. 
Bad: there are more problems. 3

Ack: Graph generated using dataset 
from https://www.cve-search.org/dataset/

2

(as of 4th D
ec 2022)

https://www.cve-search.org/dataset/

What is Privilege Separation?
(privsep)

• Compartmentalize code + data. Early application: SSH server.

• Monolithic application Concurrent set of cooperating programs.

• Monolithic application: often common privileges throughout.

• Distributed system: granularity of privilege allocation.

Application Dependencies

Privileges

4

What is Privilege Separation?
(privsep)

• Compartmentalize code + data. Early application: servers: SMTP, SSH.

• Monolithic application Concurrent set of cooperating programs.

• Monolithic application: often common privileges throughout.

• Distributed system: granularity of privilege allocation.

Application Dependencies

Privileges

5

Privsep

• Main benefit: vulnerability containment. 
Best case: if a vulnerability is exploitable, then fewer 
 privileges can be abused.

Application (1/2)

Fewer Privileges

Application (1/2) Dependencies (1/2)

More Privileges

Dependencies (1/2)

[

6

Privsep

• Implementing privsep: usually a lot of work.  
Changing software without introducing bugs.

• There are many decision to take (and retake later) wrt
what+how to separate (see yellow bubbles above).

Application Dependencies

Privileges

7

Privsep

• Implementing privsep: usually a lot of work.  
Changing software without introducing bugs.

• There are many decision to take (and retake later) wrt
what+how to separate (see yellow bubbles above).

Application Dependencies

Privileges

Too high?

Some parts are buggy?
Equally trusted?

8

Privsep

Application (1/2)

Fewer Privileges

Application (1/2) Dependencies (1/2)

More Privileges

Dependencies (1/2)

[

9

Heuristics:
- Components needing
 specific access.
- Dependencies incl.
 libraries.
- Cross-domain interfaces
 (e.g., parts of network,
 filesystem)

Privsep

• Drawbacks include: 
Inertia wrt splitting software, introduction of new failure modes
(hello distributed systems), performance overhead, inertia wrt
maintainability and portability (e.g., if use hardware enforcement).

Application (1/2)

Fewer Privileges

Application (1/2) Dependencies (1/2)

More Privileges

Dependencies (1/2)

[Some parts are buggy?
Fewer privileges =
 fewer problems.

Too high?
Can lower further?
Need further splits?

Equally trusted?
Need further splits?

10

Research Goal

Widely-applicable tool support for privsep

11

(Longstanding)

Research Goal

Widely-applicable tool support for privsep

12

Foundations:
- compartment model
- tool infrastructure
- software-level

(Longstanding)

(This paper)

Research Goal

Widely-applicable tool support for privsep

13

Foundations:
- compartment model
- tool infrastructure
- software-level

(Longstanding)

Artefacts:
+ tooling
+ several examples
+ supporting scripts
 & documentation

(This paper)

serve

move

m
onitor

domain0 domain1

compart1main
domain2
compart2

compart3

14

Compartment Model

• Organization: 
 Domain: Shared memory/handles/resources across compartments 
 Compartments: Sharing across segments. 
 Segments: code + data.

• Special compartments: Main, Monitor — always in domain0.

• Implementation: pluggable API for communication, configuration and enforcement.

• Generalization and Tooling  
vs Flexibility:  
General but restrictive

TODO: what can be put in
compartment that cannot be put

in domain?

15

Example of what’s enabled

• Organization:  
 Domain: one on each machine  
 Compartments: one in each domain. 
 Segments: 2 in Classified, 1 in Main.

• Communication channel over TCP.

• Machine and network-level policy+enforcement.

Annot.
Analyzer

Program
Transf.

Runtime

Pitchfork (source-level tool)

libcompart

Program source + Build scripts

Compartmentalized program source

1 2

3

The system has two
components based on a 
model:

• Pitchfork

• libcompart

Pitchfork

16

1 2

3

{ },…
1 Source code

Annotated source code

Transformed source code

{ },…

Annotation analysis

Runtime API

Compilation

2

3

4

5

6{ },…,
Debugging7

{ },…

17

Pitchfork

18

Pitchfork

19

libcompart

Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

Food for thought
• How to identify+scope the security problem?

• How to show the problem begin solved? 
Can this scale with size, complexity and variety of
problem instances? (programs)

• How to understand newly-introduced problems?

Food for thought
• Evaluation goals

• Evaluation process

• Challenges:

• Skills + Time needed to reproduce exploit. Scaling the eval.

• Generalizability of analysis + transformation.

• User study.

• Reasoning about incomplete info — likelihood of introducing bugs.

Plans for post-workshop: above + more software analysis

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

23

(Many more details in the paper)

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

24

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

25

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

26

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

27

Different compartments in same domain.

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

28

Memory stability wrt quantity & size of data exchange.

Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

Food for thought
• How to identify+scope the security problem?

• How to show the problem begin solved? 
Can this scale with size, complexity and variety of
problem instances? (programs)

• How to understand newly-introduced problems?

Existing literature on privsep.

Non-specialized, commodity hardware & kernel.  
“Realism”.

CVEs in third-party, widely-used programs. 
(CVEs that allow code injection or exfiltration).

Written in C, “warts and all”. 
Unmodified compiler toolchains.

Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

Food for thought
• How to show the problem being solved?

• How to show the problem begin solved? 
Can this scale with size, complexity and variety of
problem instances? (programs)

• How to understand newly-introduced problems?

Reproduce CVEs — not all attempts were 
productive for this research (discussed in an 
appendix). 
Classify CVEs?

Trial and error. Starting with simple/short 
programs. Recreated problem from literature.

Work up to more types of software. 
Generality analysis.

] Thanks to 
community

]Different experiment 
methodologies: security, 
performance, applicability.

Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

Food for thought
• How to understand newly-introduced problems?

• How to show the problem begin solved? 
Can this scale with size, complexity and variety of
problem instances? (programs)

• How to understand newly-introduced problems?

Very hard to prove a negative.

Does this ultimately require verification?

Practical under approximation : tests still run, 
usage still works (so no newly-introduced 
problems wrt those instances), but no airtight 
evidence that no problems have been introduced.
Other practical issues: build scripts, portability and  
complexity of the resulting system.

Things that didn’t work
• Some partitionings: e.g.,

• CVE-2015-6565 (openssh) involved a bad permissioning decision. In
general, can partitioning mitigate against bad configuration decisions?
Doesn’t partitioning add another layer of configuration?

• CVE-2018-10933 (libssh) involved flawed state machine.

• Eval environment diversity: leads to complexity in the paper. Better to have a
single environment for all use cases?

• Test setup inertia wrt some use-cases (library versioning) — this would have
been easy to overcome, but at the cost of a little more engineering and fiddling.

• Conceptual/algebraic approach to describe partitions, 
too simplistic.

32

Food for thought
• Evaluation goals

• Evaluation process

• Challenges:

• Skills + Time needed to reproduce exploit. Scaling the eval.

• Generalizability of analysis + transformation.

• User study.

• Reasoning about incomplete info — likelihood of introducing bugs.

Plans for post-workshop: above + more software analysis

How to quantify benefit of using a specific defense?

33

Torches on Pitchfork:
Multi-feature Evaluation of a Security-

oriented Programming Toolchain

Learning from Authoritative Security Experiment Results (LASER) 2022

Nik Sultana
Illinois Institute of Technology

