
Exploring Backdoors in Federated Graph Neural
Networks

Jing Xu 1, Stefanos Koffas 1, Stjepan Picek 1, 2

1Deflt University of Technology

2Radboud University

December 6, 2022



Graph Neural Netowrks (GNN)
Networks are ”everywhere”

● Physical networks

(a) Transportation Network (b) Molecular Network

● Model complex relationships

(c) Social Network (d) User-Item Network (e) Web Network

2 / 42



Graph Neural Networks
Graph Neural Network is a type of Neural Network which directly
operates on the graph structure.

Figure 1: Multi-layer Graph Convolutional Network (GCN).

● The input is a graph including an adjacency matrix and a feature
matrix for all nodes.

● GNNs learn features about the graph’s structure and their nodes.

● GNNs are used in both graph and node classification tasks.

3 / 42



Federated Learning (FL)

Figure 2: Federated learning framework.

● A distributed learning paradigm enabling multiple clients to train a
global model collaboratively without revealing local data.
● Ensures data privacy, data security, data access rights and allows
usage of heterogeneous data.
● Cross-device setting (e.g., android keyboard), cross-silo setting
(e.g., drug discovery from different pharmaceutical institutions).

4 / 42



Federated GNNs

● Due to privacy concerns and regular restrictions, centralized GNNs
can be difficult to apply to data-sensitive scenarios (e.g., when
pharmaceutical institutions want to collaborate for drug discovery
but cannot share their data)

● FL is a promising solution for training GNNs over isolated graph
data, and there are already some works utilizing FL to train
GNNs12 3, which we denote as Federated GNNs.

● We assume a cross-silo setting, so up to 100 clients is realistic 4.

1“Fedgraphnn: A federated learning system and benchmark for graph neural networks” (2021). In: arXiv
2“Peer-to-peer federated learning on graphs” (2019). In: arXiv
3“Federated Graph Learning–A Position Paper” (2021). In: arXiv
4“Advances and open problems in federated learning” (2021). In: Foundations and Trends® in Machine Learning 14

5 / 42



Backdoor Attacks

Settings Adversary Trigger Target label

Training ...
...

Clean samples

Poisoned samples

Train
Backdoored model

Testing Inputs without trigger
Inputs with trigger Backdoored model

Correct label

Target label
Figure 3: Backdoor attack framework.

● Backdoor attacks aim to make a model misclassify its inputs to a
preset-specific label without affecting its original task.
● Attackers poison the model by injecting triggers into the training
data that activate the backdoor in the test phase.

6 / 42



Backdoor Attack in Centralized GNNs 5 6 7

● These works focus on GNN models in centralized training.
● The trigger is a subgraph which is defined by

● Trigger size: the number of nodes in the subgraph
● Trigger density: the complexity of the subgraph, which ranges from

0 to 1.
● Node features: the feature vector for each node in the subgraph

(optional)

5Z. Zhang, J. Jia, B. Wang, and N. Z. Gong (2021). “Backdoor attacks to graph neural networks”. In: Proceedings of
the 26th ACM Symposium on Access Control Models and Technologies

6Z. Xi, R. Pang, S. Ji, and T. Wang (2021). “Graph backdoor”. In: USENIX Security
7J. Xu, M. Xue, and S. Picek (2021). “Explainability-based backdoor attacks against graph neural networks”. In:

Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning

7 / 42



Backdoor Attack in Federated Learning

● Many attacks have applied in federated learning on the Euclidean
data, e.g., images and words.
● CIFAR-10, Reddit dataset 8

● Fashion-MNIST, UCI Adult Census dataset 9

● LOAN, MNIST, CIFAR-10, Tiny-imagenet 10

8“How to backdoor federated learning” (2020). In: AISTATS
9“Analyzing federated learning through an adversarial lens” (2019). In: ICML

10“Dba: Distributed backdoor attacks against federated learning” (2019). In: ICLR

8 / 42



Challenges of implementing backdoor attacks in Federated
GNNs

● The malicious updates will be weakened in the aggregation
function.
● The backdoor trigger generation methods and injecting position are
different between graph data and images/words.
● There is no position information we can exploit in the graph data

because it’s a non-Euclidean data.

● Current defenses may not be effective in backdoor attacks in
Federated GNNs.

9 / 42



Backdoor attacks in Federated GNNs

● Therefore, we should expect different behavior of backdoor attacks
in Federated GNNs.

● Also, it is crucial to investigate if existing countermeasures that
have been tested mostly with Euclidean data are still effective for
backdoor attacks in Federated GNNs.

10 / 42



How to design backdoor attacks in Federated GNNs

Definition (Local Trigger & Global Trigger.)

The local trigger is the specific graph trigger for each malicious client in
DBA. The global trigger is the combination of all local triggers.a

aSince it is an NP-hard problem to decompose a graph into subgraphs 11, we first generate local triggers and then
compose them to get the global trigger used in CBA.

11S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani (2008). Algorithms. McGraw-Hill Higher Education New York

11 / 42



Two backdoor attacks in Federated GNNs

Definition (Distributed Backdoor Attack (DBA).)

There are multiple malicious clients, and each of them has its local
trigger. Each malicious client injects its local trigger into its training
dataset. All malicious clients have the same backdoor task. An
adversary A conducts DBA by compromising at least two clients in FL.

Definition (Centralized Backdoor Attack (CBA).)

A global trigger consisting of local triggers is injected into one client’s
local training dataset. An adversary A conducts CBA by usually
compromising only one client in FL.

12 / 42



Backdoor attack framework

...

honest clients

...

malicious clients

local trigger 1 local trigger 2 local trigger 3 local trigger 4 

Gt+1

federated learning aggregator

global trigger 

...

honest clients

...

malicious client(s) 

Gt+1

federated learning aggregator

(a) DBA (b) CBA

Gt
Gt

Figure 4: Attack Framework

13 / 42



Trigger generation

● We need to make sure the trigger pattern in CBA is the union set
of local trigger patterns in DBA.

1 First generate local triggers in DBA and then combine them to get
the global trigger

2 First generate a global trigger in CBA and then divide it into M
local triggers.

● It is an NP-hard problem to divide a graph into several subgraphs 12

● Therefore, DBA should be implemented before the CBA.

12S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani (2008). Algorithms. McGraw-Hill Higher Education New York

14 / 42



Trigger generation
● Erdős-Rényi (ER) model G(n,p)

● A graph is constructed by connecting nodes randomly.

● The graph has n nodes and each edge is included in the graph with
probability p.

Figure 5: An ER graph with 1000 vertices at the critical edge probability (1/(n − 1)).

15 / 42



Research Questions

1 What is the behavior of backdoor attacks in Federated GNNs?
● In CBA, whether the ASR of local triggers can achieve similar

performance to the global trigger even if the centralized attacker
would embed a global trigger into the model.

● In DBA, whether the ASR of the global trigger is higher than all
local triggers even if the global trigger never actually appears in any
local training dataset, as mentioned in 13.

2 What is the impact of different parameters?
● Number of clients
● Percentage of malicious clients
● Attack related parameters: trigger size, poisoning intensity and

trigger density

3 How effective are existing countermeasures?

13“Dba: Distributed backdoor attacks against federated learning” (2019). In: ICLR

16 / 42



Datasets and GNN models

● TUDataset: A collection of benchmark datasets for learning with
graphs.
● The datasets can be accessed using the Deep Graph Library which
is one of the most popular deep learning libraries for graph data
processing.
● import dgl.data
● dataset = dgl.data.TUDataset(’NCI1’)

Table 1: Datasets statistics.

Dataset # Graphs Avg. # nodes Avg. # edges Classes Class Distribution

NCI1 4,110 29.87 32.30 2 2,053[0],2,057[1]

PROTEINS full 1,113 39.06 72.82 2 663[0],450[1]

TRIANGLES 45,000 20.85 32.74 10 4,500[0 − 9]

● GNN models: GCN, GAT, GraphSAGE

17 / 42



Evaluation metrics

● Attack success rate (ASR)
The trigger-embedded inputs are

Dgt = {(G1,gt , y1), (G2,gt , y2), . . . , (Gn,gt , yn)} .

Formally, ASR is defined as:

Attack Success Rate =
∑

n
i=1 I(Gbackdoor(Gi ,gt) = yt)

n
,

● Clean accuracy drop (CAD): the classification accuracy difference
between global models with and without malicious clients over the
clean testing dataset.

18 / 42



Experimental artifacts

● Code of all experiments is published in github.
https://github.com/xujing1994/bkd fedgnn

Table 2: Summary of the experimental setting (K : number of clients, M: number of
malicious clients).14

Experiment Dataset K M

Exp. I NCI1, PROTEINS full, TRIANGLES 5 2

Exp. II NCI1, PROTEINS full, TRIANGLES 5 3

Exp. III TRIANGLES
10 4,6
20 8,12

Exp. IV TRIANGLES 100 5,10,15,20

14Exp. I, Exp. II, Exp. III, and Exp. IV represent the experiments of honest majority attack scenario, malicious majority
attack scenario, the impact of the number of clients, and the impact of percentage of malicious clients, respectively.

19 / 42

https://github.com/xujing1994/bkd_fedgnn


Required software packages

● torch>=1.9.0

● torchvision>=0.10.0

● numpy>=1.23.2

● dgl>=0.9.1

● networkx>=2.4

● hdbscan==0.8.28

● joblib==1.1.0

20 / 42



How hard was it to reproduce the original results?

● The github repository documentation is well detailed and easy to
follow.

● All scripts are runnable and cover all components relevant to the
experimental section of the paper.

● The obtained results are reproducible.

● The data used in the experiments are already processed. There is
no guide on the data pre-processing scripts so that users can easily
adapt their own datasets to the provided algorithms.

21 / 42



Script examples

● Train a clean Federated GNN model
python clean fedgnn.py --dataset NCI1 --config

./configs/TUS/TUs graph classification GCN NCI1 100k.json

--num workers 5 --num mali 0 --filename

./Results/Clean

● The results will be saved in the folder ./Results/Clean which will
be used to calculate the clean accuracy drop.

22 / 42



Script examples

● Implement distributed backdoor attack in Federated GNNs
python dis bkd fedgnn.py --dataset NCI1 --config

./configs/TUS/TUs graph classification GCN NCI1 100k.json

--num workers 5 --num mali 2 --filename ./Results/DBA

● Implement centralized backdoor attack in Federated GNNs
python cen bkd fedgnn.py --dataset NCI1 --config

./configs/TUS/TUs graph classification GCN NCI1 100k.json

--num workers 5 --num mali 2 --filename ./Results/CBA

23 / 42



Script examples
Output of the centralized backdoor attack in Federated GNNs (one
epoch):

Figure 6: Output of CBA in Federated GNNs.

24 / 42



Results

GCN NCI1 5 2 0.20 0.20 0.80 global attack.txt

Table 3: Saved results of DBA on NCI1 datast (5 clients, 2 malicious clients).

ASR with global trigger ASR with local trigger 1 ASR with local trigger 2

0.777 0.798 0.894

0.734 0.766 0.862

0.840 0.872 0.926

25 / 42



Plot figures

● For each experimental setting, we repeated the experiment 10
times to eliminate randomness introduced from our algorithms.

● We use numpy.average and numpy.std to calculate the average
value and standard deviation.
● matplotlib.plot and matplotlib.fill between to plot the
figures. For example:
● ax .plot(x , y)
● ax .fill between(x , y − std , y + std)

26 / 42



Running environment
● PyTorch (1.9.0+cu111)

● We run our experiments in TU Delft’s cluster consisting from
CentOS-based worker machines.

ssh

worker nodes

sbatch

login nodeuser

shared storage

Figure 7: Cluster’s architecture

● There are multiple NVIDIA GPUs (Tesla P100 and V100, GeForce
GTX 1080 Ti and GTX 2080 Ti, A40).

● Our code can be run on Google Colab without any issues.

27 / 42



Challenges regarding the environment

● Running experiments in ML is resource intensive and takes time.

● Our cluster is shared so we need to make sure that everything is
correct before we run the experiments there.

28 / 42



Methodology

To eliminate our implementation mistakes we followed the following
steps:

● Training:

1 From small datasets to large.
2 From centralized to distributed.

● Backdoor:

1 First run experiments with extremes (large poisoning rate and large
trigger size) to make sure that the poisoning pipeline works.

2 Move to distributed setup.
3 Use more realistic poisoning hyperparameters.

29 / 42



Findings

CBA:

● In the global model the ASR of all local triggers can be as high as
the global trigger, which is counterintuitive as the centralized
attack only embeds the global trigger into the model.

● In the malicious local model, the ASR of all local triggers is already
close to the global trigger’s ASR, meaning that the malicious local
model has learned the pattern of each local trigger.

DBA:

● The attack success rate of the global trigger is higher than (or at
least similar to) any local trigger, even if the global trigger never
actually appears in any local training dataset.

30 / 42



Failure case

● GCN (mean aggregation function) +
TRIANGLES → bad classification
performance

● Solution: Change the Aggregation function
from default mean to sum

● Reason: Due to the property of the
TRIANGLES dataset, the aggregation
function of sum works better than mean

31 / 42



What did we learn

● Comment your code and use descriptive commit messages because
you can easily forget the reason behind some of your decisions.

● We learned the hard way that we need to document everything
that we run to avoid wasting time in the same experiments.

32 / 42



Discussion

● We are the first to implement a backdoor in federated GNNs so we
did not have a baseline.
● Do you create your own baseline in such cases?

● Security of ML is most of the time empirical. How can we ensure
the current experiments are enough for a paper?

● How do you do comparisons? What metrics do you use?

● How do you run ML experiments? Do you also use slurm workload
manager? What can we do when the resources are shared and
limited sometimes?

33 / 42



Impact of number of clients

● For the largest dataset (TRIANGLES), we set bigger number of
clients, i.e., 10 and 20.

● With more clients, the attack success rate of CBA decreases while
the attack performance of DBA keeps steady.

34 / 42



Impact of percentage of malicious clients

● More clients and less percentage of malicious clients on the large
dataset - TRIANGLES, e.g., 100 clients and fewer malicious
clients, ranging from 5% to 20%.
● Pearson Correlation Coefficient (PCC)

● Compute the ASR under different number of malicious clients
● Apply numpy.corrcoef(NM, ASR) where NM: number of malicious

clients.
● The increase in NM has more positive impact in DBA than CBA.

35 / 42



Impact of backdoor hyperparameters
● Effects of trigger size: not the number of nodes in a trigger graph,
but γ fraction of the graph dataset’s average number of nodes.
● Effects of poisoning intensity: the ratio that controls the
percentage of backdoored training dataset among the local training
dataset.
● Effects of trigger density: the complexity of a local graph trigger,
which ranges from 0 to 1.

0.0
0.2
0.4
0.6
0.8
1.0

AS
R

0.15 0.20 0.25 0.30
Trigger Size

0.7

0.8

0.9

1.0

Te
st

in
g 

ac
cu

ra
cy

0.05 0.10 0.15 0.20
Poisoning Intensity

0.20 0.50 0.80 1.00
Trigger Density

Figure 8: Results on TRIANGLES with different trigger parameters.

36 / 42



How effective are existing countermeasures?

● FLAME: one of the state-of-the-art defenses against backdoor
attacks in FL.
● Filter out outliers, clip high magnitude updates, and add noise to

limit the backdoor’s effect.
● No source code available → Re-implementation.

● FoolsGold:
● Based on the assumption that honest clients can be separated from

sybils by the diversity of their gradient updates.
● One of the assumptions is that each client’s training data is non-i.i.d

and has a unique distribution → fits the non-i.i.d data distribution
setting in our work.

37 / 42



How effective are existing countermeasures?

● Both defenses are not very effective against our attack.

● Cosine similarity is not very suitable for graph data.

● Under FoolsGold, there is a significant increase in CBA’s ASR in all
models, but the testing accuracy of CBA reduces significantly at
the same time.

Hypothesis

Under FoolsGold, the malicious client in CBA is assigned a higher
weight. (The idea of FoolsGold: it reduces the aggregation weights of
detected malicious clients while retaining the weights of other clients.)

Table 4: FoolsGold weight in DBA and CBA on TRIANGLES.

Attacks Attacker 1 Attacker 2 (client 2 in CBA) Client 3 Client 4 Client 5 Attackers (sum)

DBA 0.57 ± 0.23 0.57 ± 0.23 0.86 ± 0.13 0.86 ± 0.13 1.00 ± 0.00 1.14 ± 0.23

CBA 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

38 / 42



What did we learn

● Re-implementation is oftentimes required
● Represents extra effort
● May fail to respect original implementation decisions (some tricks

may needed to get the original results).
● Make your code available and provide documentation for

reproduction.

● The experimental results are not always as expected.

● Additional experiments are required to explain the current
experimental results.

● The methods which are proved to be effective in one domain may
not work well in other domains.

● In ML it is very useful to save the models after training to avoid
spending time again when we evaluate them against defenses or
run analysis experiments with them.

39 / 42



Discussion

● How to choose the defences/attacks to evaluate the robustness of
your proposed method?
● The latest ones?
● The most effective ones?
● How to reproduce the methods? Are they open source? How to

guarantee the same experimental environment and setting?

● Generalization vs Specialization.

● Do you save the trained models from your experiments? What
about the space requirements? Do you have any efficient ways to
save large models?

40 / 42



Going Forward

● Look towards future developments on large, realistic datasets
● What if you could experiment with your own graph datasets?

● Add a data processing script to help community when using
custom datasets.

● Test Federated GNNs against more defences.

41 / 42



Contact

Jing Xu
Stefanos Koffas
Stjepan Picek

j.xu-8@tudelft.nl
s.koffas@tudelft.nl
s.picek@tudelft.nl

42 / 42


