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Background: Federated Learning (FL)

Key Characteristic: not requiring data sharing.

Goal of FL: enable a central server to train a global model by aggregating
model parameters from distributed intelligent end devices.




Research Problem and Goals



Privacy Attack against FL

FL cannot guarantee the privacy of training data.

State-of-the-art Inference Attack

B Model Inversion Attack [3]
B Membership inference attack [1,2]
m Attribute Inference Attack [4]

Real training data Inferred training data

[1] Milad Nasr et al. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP 19). IEEE, 739-753.

[2] Jingwen Zhang, Jiale Zhang, Junjun Chen, and Shui Yu. 2020. Gan enhanced membership inference: A passive local
attack in federated learning. In ICC 20202020 IEEE International Conference on Communications (ICC). IEEE, 1-6.

[3] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. 2019. Beyond inferring class
representatives: User-level privacy leakage from federated learning. In IEEE Conf. on Computer Communications (INFOCOM).
IEEE, 2512-2520.

[4] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. 2009. Learning your identity and disease from
research papers: information leaks in genome wide association study. In Proceedings of the 16th ACM conference on
Computer and communications security (CCS). ACM, 534-544.



Problem and Goal of this Paper

Problem

®m FL can protect data privacy to some extend.

B Attackers are still capable to infer training data while knowing the
model parameters.

m Differential Privacy (DP) is a tool for privacy protection, but it
harms the accuracy a lot.

B We consider a scenario that local data is small.

Goal

B Provide rigorous privacy guarantee for users by incorporate DP.
B Maintain a good trade-off between privacy and accuracy.



Differentially private federated Learning
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Continuous Training does help.

Problem: low accuracy

But it requires Enough Data & Training Power/Time



Differentially private federated Meta-Learning

Federated Learning - Federated Meta-Learning
® Deal with few-shot problem.

B Fast customization.
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Proposed Workflow, Experiment and Evaluation



DP in Federated Meta-learning

Adding noise
B The noise should be proportional to the largest gradient.
B To avoid too large noise, we should clip the gradient.
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Our Proposal

Adaptive Clipping
B Naive constant clipping maintain a fixed clipping threshold C. The noise
will be: k = C.
B Adaptive clipping: change the threshold C adaptively.
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Differentially private Meta-learning

The history of Differentially Private version gradients guides

the current clipping.
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Two Algorithms

Two threat models

B DP-AGR for threat model 1 where server is trusted, clients are
honest-but-curious

B DP-AGRLR for threat model 2 where the server is not trusted, and
clients are honest-but-curious

A |

£
Algorith{n 3: DP-AGRLR (Client Side) ]
Input: Current global model ©, local data D, DP parameter
(€0, o), Co, 2o
Output: gradient g
1 Function g = Base-Model-Train(©, D°, DY):
2 Initialize base-model: 0 « ©;
3 Split local data D*, DY « D;
4 2o < compute_noise(€g, do, *args)
5 for (x;,y;) € D® do
6 L record- level gradient: g; « Vy.L(0, x;) ;
: : A ; G5
7 clip gradient: §; « g; * min(1, m) - mg
8 § — s (i di + N (0, (20C0)?D));
9 update base-model: 0 « 0 — m g; )
10 for (x;,y;) € DY do
record-level gradient: g; « Vp.L(0,x;) ;

clip gradient: g; « g; * min(1, ﬂ%n) ;

11

12

13 g — ﬁ (i gi + N (0, (z0Co)%1)).
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Experimental Setting

Settings:
B Image Datasets: Omniglot, CIFAR-100, mini-ImageNet
® Client Number: 400,000
B Clients in each learning round: 1500
B Each client has 30 data records.

B Meta-learning algorithm: MAML.
(https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch)

Code:
B Our code is available at https://github.com/ning-wangl/DPFedMeta.
B Code Evaluated

<
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https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
https://github.com/ning-wang1/DPFedMeta

Datasets (1/3)

©® Omniglot Dataset https://github.com/brendenlake/omniglot

® 1623 characters

® Each has 20 examples
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https://github.com/brendenlake/omniglot

Datasets (2/3)

® Mini-ImageNet Dataset https://github.com/yaoyao-liu/mini-imagenet-tools

® 100 classes

® Each has 600 examples

VIRGINIA
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https://github.com/yaoyao-liu/mini-imagenet-tools

Datasets (3/3)

© CIFAR-FS Dataset https://github.com/bertinetto/r2d?2
® 100 classes

® Each has 600 examples
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https://github.com/bertinetto/r2d2

Data Split

® Use CIFAR dataset as example: 100 classes, each has 600 examples.

® A general image classification
B Training: 100 classes, each has 500 examples
B Testing: 100 classes, each has 100 examples

® Meta-learning
B Training: 80 classes, each has 600 examples

B Testing: 20 classes, each has 600 examples
training
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N-Way K-shot Task

N denotes the number of classes.

K represents the number of data records in each class.

N-way K-shot meta-learning
m Meta-Training:
+ Pick N classes, pick K records for each of the N classes, learn a base model.

+ Pick other records in the N classes to calculate gradients on the learned base
model.

+ Use gradients to update meta model.
B Meta-Testing

+ Pick N unseen classes. pick K records for each of the N classes. Continuously train
the meta-model using these data.

+ Pick other records in the N classes to evaluate accuracy.

20



N-Way K-shot Task

® Visualization of 2-way 3-shot Calculate gradients with
new data and base model.
Train a base model Update meta-model.
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Simulate Clients

® Sampling data. Client 1
® 400,000 clients
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Deep learning Environment

Hardware: a server equipped with a 3.3 GHz Intel Core i19-9820X CPU, three
GeForce RTX 2080 Ti GPUs

Operating system: Ubuntu 18.04.3 LTS (a different version of Ubuntu is ok if
it support the Pytorch deep learning framework)

Deep learning framework: Pytorch 1.4.0
Programming Language: Python 3.6.10

Executable File 179 lines (179 sloc) 5.16 KB

name: myenv
channels:
- pytorch

Other dependent library: https://github.com/ning-
wangl/DPFedMeta/blob/main/environment.yml

- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _tflow_select=2.3.0=mkl
- astor=0.8.1=py36h06a4308_0
- blas=1.0=mkl
- blinker=1.4=py36h06a4308_0

- brotlipy=0.7.0=py36h27cfd23_1003
- bzip2=1.0.8=h516909a_2

- c-ares=1.17.1=h27cfd23_0

- ca-certificates=2021.5.25=h06a4308_1
- cachetools=3.1.1=py_0

- cairo=1.16.0=h18b612c_1001

- certifi=2021.5.30=py36h06a4308_0
- cffi=1.13.2=py36h2e261b9_0

- chardet=4.0.0=py36h06a4308_1003
- click=8.0.1=pyhd3eb1b®_0

- coverage=5.5=py36h27cfd23_2

- cryptography=3.4.7=py36hd23ed53_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py36_0

- cython=0.29.23=py36h2531618_0

- dbus=1.13.12=h746ee38_0

- expat=2.2.6=he6710b0_0

- ffmpeg=4.0=hcdf2ecd_0

- fontconfig=2.13.1=he4413a7_1000
- freeglut=3.0.0=hf484d3e_1005

- freetype=2.9.1=h82a8886c_1

- gettext=0.19.8.1=hc5be6a@_1002

P e e e e <l
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VI RG I N IA 37 - google-auth-httplib2=0.0.3=py_2
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https://github.com/ning-wang1/DPFedMeta/blob/main/environment.yml

Set up GPU for Deep Learning

Goal
B Enable Deep Learning libraries (e.g., Pytorch) talk to GPU.

Setting Up Steps:
B NVIDIA Driver installation
B CUDA installation
B and CUDNN installation

Setting up guidelines are available on a blog
https://towardsdatascience.com/deep-learning-gpu-installation-on-ubuntu-18-4-

9b12230al1d31

VIRGINIA
TECH.
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https://towardsdatascience.com/deep-learning-gpu-installation-on-ubuntu-18-4-9b12230a1d31

Adaptive Clipping Percentile k

® The adaptive clipping threshold at time step t + 1 is computed with a
sequence of differentially private version of gradients beforet + 1 (i.e., " g
t-W+1, "gt-W+2,...,"gt)by

91 g2 |~|gw-1| | 9w | |Gws| -
. ~ o Cwa1 = f(G1, -, Gw) f(ﬁéapercentile function
Ciy1 = _ k . .
t+1 f({gt W+1 - gt }, ) | Cw+2 = f(G2, -, Gw1) |
0.95 0.95
-&— Adaptive clipping B Ours
i inDi | mmm AQc
0.94 - Constant clipping 0.90 " Constant
0.85 -
3 0.93
©
5 g 0.80
2 0.92 3
< V. £0.75
0.91 0.70 -
0.90 . 0.65
20 40 60 80 100
0.60
k 1 15 30 45 60 75
Iteration
All other settings are the same, only
change the clipping method.
VIRGINIA
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Noise Level z

Small Noise will consume the privacy budget quickly, so learning iterations
will be limited.

Larger Noise will cover useful gradients.
Explore Trade-off.

1.00

0.95 -
Noise=1 get the best accuracy.

It indicates learning iteration is not a
key limitation on the used dataset.

O

O

o
1

Accuracy
o
o0
(92}
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Client Sampling Number L

With small sampling number, noise may cover the
gradients.

With large sampling number, algorithm will reach
the privacy leakage threshold quickly, so learning
iterations will be limited.

Explore Trade-off

Accuracy
o
(0 0]
w

L=1600 get the best accuracy.

0.70 I I I I
1001000 3000 5000

L
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Explore Client Sampling Number L and Noise z

Together

Accuracy

1.0

O
O
1

o
(00)
1

o
~

0.6

When L is small,

B The smaller noise get better accuracy.

B Because larger noise may cover the
gradients.

When L is large enough,

B The smaller noise get extremely low
accuracy.

800 3200 5600 8000 N
¢ B Because the combination of large L and

small z will reach the privacy leakage
threshold quickly, so learning iterations will
be limited.
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System Evaluations over Baselines

privacy budget
m DP-AGR achieves (1.5,107°)-DP;
m DP-AGRLR achieves (2.5,107°)-DP for record-level privacy
m Baseline achieves (9.5,1073)-DP

Accuracy

Table 2: Meta-testing accuracy (%) with DP-AGR, DP-AGRLR and other baselines.

Dataset N-way K-shot Random initial Non-private BP- AGIi)rg;fZélllnglt(}}llrSnML 4]
Omnislot 5-way 1-shot 49.2 99.4 93.9 72.4 44.6
& 5-way 5-shot 61.0 99.8 96.8 89.7 75.0
5-way 1-shot 33.8 61.0 47.1 39.0 32.2
CLEARZES 5-way 5-shot 45.4 78.6 58.2 49.2 438.6
5. 5-way 1-shot 23.3 51.7 37.3 27.7 26.1
NUREIMAgENCE: o v 5dhof 24.2 65.3 48.8 33.2 38.0




Hardware Evaluation Results

We are running the code on a server equipped with a 3.3 GHz Intel Core i9-
9820X CPU, and a GeForce RTX 2080 Ti GPU. The running time of DPAGR

Table 3: Per-task computation time

Dataset MAML DP-AGR DP-AGRLR
Omniglot 39.9ms  54.7ms 0.52s
CIFAR-F 68.7ms  81.3ms 1.06s
Mini-ImageNet 112.3ms 102.7ms 1.17s

 DP-AGR achieves comparable computational performance with the
original non-private MAML algorithm.

« DP-AGRLR is more time-consuming due to the need for computing
per-record gradients.



Discussion & Meta Questions
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Base Code

A baseline Meta-learning algorithm: MAML.

(https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch). It’s a
centralized non-private meta-learning algorithm.

The privacy evaluation library, moments accountant:
https://github.com/tensorflow/privacy

W VIRGINIA
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https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
https://github.com/tensorflow/privacy

Reproduced Baselines

We reproduced the results of Base code as one baseline.
B MAML:
https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch.
B Their results are reproduced.

For the other baseline GBML [1], code is not published.

B We reimplemented their methods.

® Our produced results were different from their reported results, some
with higher accuracy while some with lower accuracy.

B We used two common datasets with GBML. For the two datasets, | ended
up copying their results published in their paper.

B For another dataset, we report the results evaluated by our
reimplementation.

[1] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. 2020. Differentially
W Private Meta-Learning. In International Conference on Learning Representations.
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https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch

Lessons Learned

Guidelines for k,z, and L

B First, we recommend to start from a small noise multiplier z (e.g., 1) and
increase z only when you can not guarantee convergence before using up
the privacy budget.

B Second, we recommend starting with a relatively large L especially when
Z is large.

B We can decrease L only when you can not guarantee convergence before
using up the privacy budget.

B Compared with the non-private training, we need apply a larger learning
rate since the training rounds are limited because of privacy concerns.

B Finally, as privacy parameter € is only determined by z and L, we can
adjust other parameters, such as k, to boost the model accuracy.
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Slow Training Problem

Problem
B The training time of DP-AGRLR for 400,000 tasks is over 30h.
Reason

B Per-record gradient calculation is time-consuming, and it’s an open
problem.
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Slow Training Problem

How to deal?

B GPU speeds up gradient calculation for batched data.

LImsZ_.
L|.Q§§.3_.

||||| M

loss summation over the

loss | batched data, and then
one backpropagation.

m If we still load a batch of data, but calculate gradient one record by another. There

will be much I/O between GPU and CPU.
TRRR

Loss1 |

[oss?

(oss3 1]

LIoSS4

B Loading one record a time.
EREE

TR [Moss5__]

LIoss

What did we achieve? ''!11
B Training time from 30h to 6h.

\/

Loss 1 one backpropagation.
Loss 2 one backpropagation.
Loss 3 one backpropagation.

Loss 1 one backpropagation.
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Summary

Differentially private federated meta-learning architecture.
B Parameter tunning is time-consuming
® We should reason the tuning directions beforehand but not tune randomly.

B Good trade-off can be found.

Understand how GPU speeds up to avoid wrong configurations.
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Future Direction

Further improve the time efficiency by using state-of-the-art single-
record gradient acceleration techniques [1].

Differential Privacy is represented by two parameters (g, 9).

m [t is not straightforward to understanding how good the privacy is.
m We plan to implement privacy attack.

+ Membership inference attack [2,3]
¢+ Model Inversion Attack [4]
o Attribute Inference Attack [5]
m Attack on differentially private model and non-private model.
® The attack success rate can be an indicator for the privacy protection level.

[1] Lee, Jaewoo, and Daniel Kifer. "Scaling up differentially private deep learning with fast per-example gradient clipping." Proceedings on Privacy Enhancing
Technologies 2021.1 (2021)

[2] Milad Nasr et al. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In
2019 IEEE Symposium on Security and Privacy (SP 19). IEEE, 739-753.

[3] Jingwen Zhang, Jiale Zhang, Junjun Chen, and Shui Yu. 2020. Gan enhanced membership inference: A passive local attack in federated learning. In ICC 20202020
IEEE International Conference on Communications (ICC). IEEE, 1-6.

[4] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. 2019. Beyond inferring class representatives: User-level privacy leakage from
federated learning. In IEEE Conf. on Computer Communications (INFOCOM). |IEEE, 2512-2520.

[5] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. 2009. Learning your identity and disease from research papers: information leaks in
genome wide association study. In Proceedings of the 16th ACM conference on Computer and communications security (CCS). ACM, 534-544.
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Thank You!
Q&A
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