

THE LASER WORKSHOP

Simulation on Differentially Private Federated Meta-learning Systems

Authors: **Ning Wang**', Yang Xiao[†], Yimin Chen[‡], Ning Zhang^{*}, Wenjing Lou', and Y. Thomas Hou'

Virginia Tech ' University of Kentucky [†] University of Massachusetts Lowell [‡] Washington University in St. Louis ^{*}

Our ACSAC paper is entitled "Squeezing More Utility via Adaptive Clipping on Differentially Private Gradients in Federated Meta-Learning".

Background: Federated Learning (FL)

- Key Characteristic: not requiring data sharing.
- Goal of FL: enable a central server to train a global model by aggregating model parameters from distributed intelligent end devices.

Research Problem and Goals

Privacy Attack against FL

- FL cannot guarantee the privacy of training data.
- State-of-the-art Inference Attack
 - Model Inversion Attack [3]
 - Membership inference attack [1,2]
 - Attribute Inference Attack [4]

Real training data

Inferred training data

[1] Milad Nasr et al. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP 19). IEEE, 739–753.
[2] Jingwen Zhang, Jiale Zhang, Junjun Chen, and Shui Yu. 2020. Gan enhanced membership inference: A passive local attack in federated learning. In ICC 20202020 IEEE International Conference on Communications (ICC). IEEE, 1–6.
[3] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. 2019. Beyond inferring class representatives: User-level privacy leakage from federated learning. In IEEE Conf. on Computer Communications (INFOCOM). IEEE, 2512–2520.

[4] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. 2009. Learning your identity and disease from research papers: information leaks in genome wide association study. In Proceedings of the 16th ACM conference on Computer and communications security (CCS). ACM, 534–544.

Problem and Goal of this Paper

- Problem
 - FL can protect data privacy to some extend.
 - Attackers are still capable to infer training data while knowing the model parameters.
 - Differential Privacy (DP) is a tool for privacy protection, but it harms the accuracy a lot.
 - We consider a scenario that local data is small.

• Goal

- Provide rigorous privacy guarantee for users by incorporate DP.
- Maintain a good trade-off between privacy and accuracy.

Differentially private federated Learning

Problem: low accuracy

Continuous Training does help. But it requires Enough Data & Training Power/Time

Differentially private federated Meta-Learning

- Federated Learning → Federated Meta-Learning
 - Deal with few-shot problem.
 - Fast customization.

Proposed Workflow, Experiment and Evaluation

DP in Federated Meta-learning

Adding noise

- The noise should be proportional to the largest gradient.
- To avoid too large noise, we should clip the gradient.

Our Proposal

Adaptive Clipping

- Naïve constant clipping maintain a fixed clipping threshold C. The noise will be: k * C.
- Adaptive clipping: change the threshold C adaptively.

The gradients will decrease during the course of training.

We can change the threshold *C* according to the gradient change.

Differentially private Meta-learning

 The history of *Differentially Private* version gradients guides the current clipping.

Two Algorithms

- Two threat models
 - DP-AGR for threat model 1 where server is trusted, clients are honest-but-curious
 - DP-AGRLR for threat model 2 where the server is not trusted, and clients are honest-but-curious

Algorithm 3: DP-AGRLR (Client Side)	
Input : Current global model Θ , local data \mathcal{D} , DP parameter	
$(\epsilon_0, \delta_0), C_0, z_0$	
Output: gradient g	
1 Function $g =$ Base-Model-Train($\Theta, \mathcal{D}^s, \mathcal{D}^q$):	
² Initialize base-model: $\theta \leftarrow \Theta$;	
³ Split local data $\mathcal{D}^s, \mathcal{D}^q \leftarrow \mathcal{D};$	
4 $z_0 \leftarrow \text{compute_noise}(\epsilon_0, \delta_0, *args)$	
5 for $(x_i, y_i) \in \mathcal{D}^s$ do	
6 record-level gradient: $g_i \leftarrow \nabla_{\theta} \mathcal{L}(\theta, x_i)$;	
7 Clip gradient: $\hat{g}_i \leftarrow g_i * \min(1, \frac{C_0}{\ g_i\ })$;	ing
$s \tilde{g} \leftarrow \frac{1}{ \mathcal{D}^s } \left(\sum_i \hat{g}_i + \mathcal{N}(0, (z_0 C_0)^2 \mathbf{I}) \right);$	
9 update base-model: $\theta \leftarrow \theta - \eta_1 \tilde{g}$;	<u>}</u>
10 for $(x_i, y_i) \in \mathcal{D}^q$ do	
11 record-level gradient: $g_i \leftarrow \nabla_{\theta} \mathcal{L}(\theta, x_i)$;	
12 clip gradient: $\hat{g}_i \leftarrow g_i * \min(1, \frac{C_0}{\ g_i\ })$;	
13 $g \leftarrow \frac{1}{ \mathcal{D}^q } \left(\sum_i \hat{g}_i + \mathcal{N}(0, (z_0 C_0)^2 \mathbf{I}) \right).$	

Experimental Setting

- Settings:
 - Image Datasets: Omniglot, CIFAR-100, mini-ImageNet
 - Client Number: 400,000
 - Clients in each learning round: 1500
 - Each client has 30 data records.
 - Meta-learning algorithm: MAML. (<u>https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch</u>)

- Code:
 - Our code is available at <u>https://github.com/ning-wang1/DPFedMeta</u>.
 - Code Evaluated

Datasets (1/3)

- Omniglot Dataset <u>https://github.com/brendenlake/omniglot</u>
- 1623 characters
- Each has 20 examples

Datasets (2/3)

- Mini-ImageNet Dataset <u>https://github.com/yaoyao-liu/mini-imagenet-tools</u>
- 100 classes
- Each has 600 examples

Datasets (3/3)

- CIFAR-FS Dataset <u>https://github.com/bertinetto/r2d2</u>
- 100 classes
- Each has 600 examples

airplane	🛁 🗞 😹 📈 🍬 = 🛃 👯 🛶 💒
automobile	an a
bird	in the second
cat	li 🕼 😂 🔊 🎉 🚵 🕰 🧼 💞
deer	
dog	98 🔬 👟 🥂 🉈 🎒 💽 💦 🎊
frog	
horse	
ship	e in the interview interview in the interview inte
truck	🚄 🍱 💒 👺 💳 🐋 💒 🕋 🚮

Data Split

Use CIFAR dataset as example: 100 classes, each has 600 examples.

• A general image classification

- Training: 100 classes, each has 500 examples
- Testing: 100 classes, each has 100 examples

airplaneImage: Selection of the selection of the

Meta-learning

- Training: 80 classes, each has 600 examples
- Testing: 20 classes, each has 600 examples

training testing

N-Way K-shot Task

- N denotes the number of classes.
- *K* represents the number of data records in each class.
- N-way K-shot meta-learning
 - Meta-Training:
 - Pick *N* classes, pick *K* records for each of the *N* classes, **learn a base model**.
 - Pick other records in the N classes to calculate gradients on the learned base model.
 - Use gradients to update meta model.
 - Meta-Testing
 - Pick N unseen classes. pick K records for each of the N classes. Continuously train the meta-model using these data.
 - Pick other records in the N classes to evaluate accuracy.

N-Way K-shot Task

Calculate gradients with Visualization of 2-way 3-shot new data and base model. Train a base model Update meta-model. airplane automobile bird cat training deer dog frog horse ship testing truck

Continue to train meta-model

Test accuracy of the trained meta-model.

GINIA

Simulate Clients

VIRGINIA TECH.

Deep learning Environment

- Hardware: a server equipped with a 3.3 GHz Intel Core i9-9820X CPU, three GeForce RTX 2080 Ti GPUs
- Operating system: Ubuntu 18.04.3 LTS (a different version of Ubuntu is ok if it support the Pytorch deep learning framework)
- **Deep learning framework:** Pytorch 1.4.0
- **Programming Language:** Python 3.6.10
- Other dependent library: <u>https://github.com/ning-</u> wang1/DPFedMeta/blob/main/environment.yml


```
Executable File 179 lines (179 sloc) 5.16 KB
     name: myenv
     channels:
       - pytorch

    conda-forge

       - defaults
     dependencies:
       - _libgcc_mutex=0.1=main

    _tflow_select=2.3.0=mkl

      - astor=0.8.1=pv36h06a4308 0
      - blas=1.0=mkl
 10

    blinker=1.4=py36h06a4308_0

 11
 12

    brotlipy=0.7.0=py36h27cfd23_1003

 13 - bzip2=1.0.8=h516909a 2
 14 - c-ares=1.17.1=h27cfd23_0
 15 - ca-certificates=2021.5.25=h06a4308_1
16 - cachetools=3.1.1=py_0
17 - cairo=1.16.0=h18b612c_1001
18 - certifi=2021.5.30=py36h06a4308_0
19 - cffi=1.13.2=py36h2e261b9_0
20 - chardet=4.0.0=py36h06a4308_1003
21 - click=8.0.1=pyhd3eb1b0 0
22

coverage=5.5=py36h27cfd23_2

23
      - cryptography=3.4.7=py36hd23ed53_0
24

    cudatoolkit=10.1.243=h6bb024c 0

      - cycler=0.10.0=py36_0
25
      - cython=0.29.23=py36h2531618_0
26
27 - dbus=1.13.12=h746ee38_0
28 - expat=2.2.6=he6710b0 0
29 - ffmpeg=4.0=hcdf2ecd 0
30 - fontconfig=2.13.1=he4413a7 1000
31 - freeglut=3.0.0=hf484d3e 1005
32 - freetype=2.9.1=h8a8886c_1
33 - gettext=0.19.8.1=hc5be6a0_1002
 34 - glib=2.58.3=py36h6f030ca_1002
 35 - google-api-python-client=1.7.11=py 0
      - google-auth=1.10.0=py_0
     - google-auth-httplib2=0.0.3=py_2
 37
     – google-auth-oauthlib=0.4.4=pyhd3eb1b0_0
 39
     - google-pasta=0.2.0=pv 0
      - graphite2=1.3.13=hf484d3e 1000
 40
```

23

Set up GPU for Deep Learning

Goal

- Enable Deep Learning libraries (e.g., Pytorch) talk to GPU.
- Setting Up Steps:
 - NVIDIA Driver installation
 - CUDA installation
 - and CUDNN installation
- Setting up guidelines are available on a blog <u>https://towardsdatascience.com/deep-learning-gpu-installation-on-ubuntu-18-4-</u> <u>9b12230a1d31</u>

Adaptive Clipping Percentile k

The adaptive clipping threshold at time step t + 1 is computed with a sequence of differentially private version of gradients before t + 1 (i.e., ~g
 t-W +1, ~g t-W +2, ..., ~g t) by

$$C_{t+1} := f(\{\tilde{g}_{t-W+1}, ..., \tilde{g}_t\}, k)$$

$$\begin{array}{c|c} \tilde{g}_1 & \tilde{g}_2 & \cdots & \tilde{g}_{W-1} & \tilde{g}_W & \tilde{g}_{W+1} & \cdots \\ \hline C_{W+1} = f(\tilde{g}_1, \dots, \tilde{g}_W) & \text{f(.) is a percentile function} \\ \hline C_{W+2} = f(\tilde{g}_2, \dots, \tilde{g}_{W+1}) \end{array}$$

All other settings are the same, only change the clipping method.

Noise Level z

- Small Noise will consume the privacy budget quickly, so learning iterations will be limited.
- Larger Noise will cover useful gradients.
- Explore Trade-off.

Noise=1 get the best accuracy. It indicates learning iteration is not a key limitation on the used dataset.

Client Sampling Number L

- With small sampling number, noise may cover the gradients.
- With large sampling number, algorithm will reach the privacy leakage threshold quickly, so learning iterations will be limited.
- Explore Trade-off

Explore Client Sampling Number L and Noise z Together

- When L is small,
 - The smaller noise get better accuracy.
 - Because larger noise may cover the gradients.
- When *L* is large enough,
 - The smaller noise get extremely low accuracy.
 - Because the combination of large L and small z will reach the privacy leakage threshold quickly, so learning iterations will be limited.

System Evaluations over Baselines

- privacy budget
 - DP-AGR achieves $(1.5, 10^{-6})$ -DP;
 - DP-AGRLR achieves (2.5, 10⁻⁵)-DP for record-level privacy
 - Baseline achieves (9.5, 10⁻³)-DP
- Accuracy

Dataset	N-way K-shot	Random initial	Non-private -	DP-AG	Priva R DP	te Alg -AGRL	orithm R GBML [14]
Omniglot	5-way 1-shot 5-way 5-shot	49.2 61.0	99.4 99.8	93.9 96.8		72.4 89.7	44.6 75.0
CIFAR-FS	5-way 1-shot 5-way 5-shot	33.8 45.4	61.0 78.6	47.1 58.2		39.0 49.2	32.2 48.6
Mini-ImageNet	5-way 1-shot 5-way 5-shot	23.3 24.2	51.7 65.3	37.3 48.8		27.7 33.2	26.1 38.0

Table 2: Meta-testing accuracy (%) with DP-AGR, DP-AGRLR and other baselines.

Hardware Evaluation Results

• We are running the code on a server equipped with a 3.3 GHz Intel Core i9-9820X CPU, and a GeForce RTX 2080 Ti GPU. The running time of DPAGR

Dataset	MAML	DP-AGR	DP-AGRLR
Omniglot	39.9ms	54.7ms	0.52s
CIFAR-F	68.7ms	81.3ms	1.06s
Mini-ImageNet	112.3ms	102.7ms	1.17s

Table 3: Per-task computation time

- DP-AGR achieves comparable computational performance with the original non-private MAML algorithm.
- DP-AGRLR is more time-consuming due to the need for computing per-record gradients.

Discussion & Meta Questions

Base Code

- A baseline Meta-learning algorithm: MAML. (<u>https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch</u>). It's a centralized non-private meta-learning algorithm.
- The privacy evaluation library, moments accountant: <u>https://github.com/tensorflow/privacy</u>

Reproduced Baselines

- We reproduced the results of Base code as one baseline.
 - MAML:

https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch.

- Their results are reproduced.
- For the other baseline GBML [1], code is not published.
 - We reimplemented their methods.
 - Our produced results were different from their reported results, some with higher accuracy while some with lower accuracy.
 - We used two common datasets with GBML. For the two datasets, I ended up copying their results published in their paper.
 - For another dataset, we report the results evaluated by our reimplementation.

Lessons Learned

- Guidelines for *k*,*z*, and *L*
 - First, we recommend to start from a small noise multiplier z (e.g., 1) and increase z only when you can not guarantee convergence before using up the privacy budget.
 - Second, we recommend starting with a relatively large L especially when z is large.
 - We can decrease L only when you can not guarantee convergence before using up the privacy budget.
 - Compared with the non-private training, we need apply a larger learning rate since the training rounds are limited because of privacy concerns.
 - Finally, as privacy parameter
 e is only determined by z and L, we can adjust other parameters, such as k, to boost the model accuracy.

Slow Training Problem

- Problem
 - The training time of DP-AGRLR for 400,000 tasks is over 30h.
- Reason
 - Per-record gradient calculation is time-consuming, and it's an open problem.

Slow Training Problem

- How to deal?
 - GPU speeds up gradient calculation for batched data.

If we still load a batch of data, but calculate gradient one record by another. There will be much I/O between GPU and CPU.

loss4

Loading one record a time.

- What did we achieve?
 - Training time from 30h to 6h.

Wrap up discussion

Summary

- Differentially private federated meta-learning architecture.
 - Parameter tunning is time-consuming
 - We should reason the tuning directions beforehand but not tune randomly.
 - Good trade-off can be found.
- Understand how GPU speeds up to avoid wrong configurations.

Future Direction

- Further improve the time efficiency by using state-of-the-art single-record gradient acceleration techniques [1].
- Differential Privacy is represented by two parameters (ε, δ).
 - It is not straightforward to understanding how good the privacy is.
 - We plan to implement privacy attack.
 - Membership inference attack [2,3]
 - Model Inversion Attack [4]
 - Attribute Inference Attack [5]
 - Attack on differentially private model and non-private model.
 - The attack success rate can be an indicator for the privacy protection level.

[5] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. 2009. Learning your identity and disease from research papers: information leaks in genome wide association study. In Proceedings of the 16th ACM conference on Computer and communications security (CCS). ACM, 534–544.

^[1] Lee, Jaewoo, and Daniel Kifer. "Scaling up differentially private deep learning with fast per-example gradient clipping." *Proceedings on Privacy Enhancing Technologies* 2021.1 (2021)

^[2] Milad Nasr et al. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP 19). IEEE, 739–753.

^[3] Jingwen Zhang, Jiale Zhang, Junjun Chen, and Shui Yu. 2020. Gan enhanced membership inference: A passive local attack in federated learning. In ICC 20202020 IEEE International Conference on Communications (ICC). IEEE, 1–6.

^[4] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. 2019. Beyond inferring class representatives: User-level privacy leakage from federated learning. In IEEE Conf. on Computer Communications (INFOCOM). IEEE, 2512–2520.

Thank You! Q&A