Design and methodology of a longitudinal honeypot study

Shreyas Srinivasa, Jens M. Pedersen, *Emmanouil Vasilomanolakis Aalborg University, Denmark

*Technical University of Denmark

\$>:whoami()

- Shreyas Srinivasa
- Ph.D. Fellow Cybersecurity Research Group, Aalborg University, Copenhagen, Denmark
- Research Interests Threat Intelligence, Cyber Deception, Internet Security Measurements
- Visiting Scholar at University of Cambridge (Cambridge Cybercrime Centre)
- Prior to Ph.D. worked in SOC team of a bank in Germany
- Masters from TU Darmstadt, Germany

Cyber.aau.dk

Regarding the dataset/artifact \otimes

- Interaction matters: a comprehensive analysis and a dataset of hybrid IoT/OT honeypots (ACSAC 2022)
- No artifact (28), thanks to GDPR and legal entanglement around it
- Dataset available as embargo, on request (https://doi.org/10.11583/DTU.21088651)
- Ongoing effort to clear the legal hurdles,
- Pseudo-anonymization?
- ~5 TB (comp.)

	Browse	Search on Technical Univer C	2	Log ir
	Files u	nder embargo due to legal	reasons	
Reason		upon request and upon signing a legal a ses it cannot be put in public due to GD	-	
		Request access to files		
A dataset of h	ybrid loT/OT ho	neypots		
Cite Share	e + Collect			
	10 2022 02:56 authored	by Shreyas Srinivasa, Jens Myrup	USAGE METRICS 17	
'	2	sy enregue ennitada, cono ingrap		
Dataset posted on 17 Pedersen, Emmanoui	2		128 0 0	tions
Pedersen, Emmanoui	I Vasilomanolakis	kindly refer to the paper "Interaction et of hybrid IoT/OT honeypots" publishe	128 0 0 views downloads cita	tions

Problem

Design

- Methodology
- Analysis

Limitations

Honeypots

- O deception-based entities that simulate services, gather attack information
- decoys, with a "Know your enemy" concept
- used in defensive security as a trap mechanism
- act as sensors that can be used for malware collection
- study attacker behavior
- insider attacks
- Classified based on interaction-levels offered to attackers
 - Low limited simulation of a protocol (application level)
 - Medium extended simulation, may include a service/device/profile
 - High actual systems with services configured to work as a honeypot

Value

Any interaction with a "honeypot" system is suspicious

As they are non-production systems, there is no real reason for any interaction with them

Traditional honeypots

Honeypots	Ports & Services
Vinno	Ports:22/2222
Kippo	Services: SSH
Cowrie	Ports: 22/2222 23/2323
Cowrie	Services: SSH, Telnet
Clastorf	Ports: 80, 8080
Glastopf	Services: HTTP
Dionaea	Ports: 80, 443, 21
Dionaea	Services: HTTP, FTP
Nononthoo	Ports: 21
Nepenthes	Services: FTP
Amun	Ports: 23,21,80,36,143
Amun	Services: Telnet, FTP, HTTP, SMTP, IMAP
Connot	Ports: 80, 502, 102
Conpot	Services: HTTP, Modbus, S7
Caspot	Ports: 100001
Gaspot	Services: ATG
MTPot	Ports: 23
WIIFOU	Services: Telnet

Honeynets / Honeyfarms

- Instead of deploying large number of honeypots or honeypots on every network, you simply deploy your honeypots in a single, consolidated location
- Attackers are redirected to the farm, regardless of of what network they are on / probing
- act as sensors and offer telemetry/feed of events
- Source of Threat Intelligence data
- Can be a one consolidated honeypot host or multiple honeypots deployed in diverse locations

Source: https://threatmap.checkpoint.com/

INTELLIGENCE

- Turning Internet scanning noise into intelligence
- Removing false positives from Internet scanners like Shodan, Censys ...
- Trending vulnerabilities

Background

Design

- Methodology
- Analysis

Limitations

• Do any operational parameters **influence** the type of attacks received on a honeypot?

- What is the influence of known operational parameters
 - Interaction-levels
 - Simulation environments
 - Deployment infrastructure
 - Geo-location

Limitations of current Datasets

- Honeypot datasets are not public (curated)
- Anonymized
- GDPR
- Most honeypots deployed by companies are either in low or medium interaction
- Security corporations have some limitations in what they share, less freedom, low flexibility

Related work – Honeypot Studies

Study	Interaction level	Study period	Geographically distributed	Deployment
Honeycloud [7] (2019)	Medium	12 months	Yes	hardware, cloud
IoTPOT [27](2015)	Low	39 days	No	physical
Open for hire [40] (2021)	Low, Medium	1 month	No	physical
Muti-faceted Honeypot [52](2020)	Low	2 years	No	physical
Honware [48] (2019)	High	14 days	No	physical
Siphon [13](2017)	High	2 months	Yes	physical, cloud
Hornet 40 [44](2021)	Passive	40 days	Yes	cloud
Picky Attackers [3] (2017)	Medium	4 months	Yes	physical, cloud

Designing a longitudinal honeypot study -Challenges

- None of the studies had an empirical focus towards all the parameters in the study
- Traditional honeypots are limited in interaction levels (i.e., offer binary interaction, either low or medium or high)
- Some honeypots known to be vulnerable to fingerprinting attacks (* Vetterl et al.)
- Structured attack data collection
- Staleness

* Vetterl, A., & Clayton, R. (2018). Bitter harvest: Systematically fingerprinting low-and medium-interaction honeypots at internet scale. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).

To study the influence

• What is the influence of known operational parameters

Interaction-levels	
Simulation environments	
Deployment infrastructure	
Geo-location	
	Interaction-levels Simulation environments Deployment infrastructure Geo-location

- Must have multiple interaction levels
- Must simulate multiple protocols (application level)
- Deployed on physical (lab env.) and cloud
- Operational in multiple geo-locations

Background

Problem

- Design
- Methodology
- Analysis
- Limitations

RIoTPot

- A hybrid-interaction honeypot
- Modular
- Containerized
- Extensibility
- Active noise filter
- Flexible event storage and logging

https://github.com/aau-network-security/riotpot

Related work – Honeypot Studies

Study	Interaction level	StudyGeographicallperioddistributed		Deployment	
Honeycloud [7] (2019)	Medium	12 months	Yes	hardware, cloud	
IoTPOT [27](2015)	Low	39 days	No	physical	
Open for hire [40] (2021)	Low, Medium	1 month No		physical	
Muti-faceted Honeypot [52](2020)	Low	2 years	No	physical	
Honware [48] (2019)	[48] (2019) High		No	physical	
Siphon [13](2017)	High	2 months	Yes	physical, cloud	
Hornet 40 [44](2021)	0 [44](2021) Passive		Yes	cloud	
Picky Attackers [3] (2017)	y Attackers [3] (2017) Medium		Yes	physical, cloud	
RIoTPot (2022)	oTPot (2022) Low, High, Hybrid		Yes	physical, cloud	

Design - Longitudinal Study

- 3 Interaction levels Low, High, Hybrid
- 2 Deployment environments lab, cloud
- 12 independent honeypot hosts per interaction level
- 4 geographical locations Denmark(Lab), Germany, New York City, Singapore
- 6 application protocols Telnet, SSH, HTTP, MQTT, Modbus, CoAP
- Comparison with 1 medium interaction honeypot Conpot
- 3 months of evaluation

Design - Longitudinal Study

Host	Environment	Geo-Location	Interaction-level	Protocols Emulated
R1	Lab	Denmark	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R2	Lab	Denmark	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R3	Lab	Denmark	Urshuid	High - SSH, MQTT, Modbus, CoAP
K5	Lab		Hybrid	Low - Telnet, HTTP
C1	Lab	Denmark	Medium	Telnet, SSH, HTTP, Modbus, S7
R4	Cloud	New York City	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R 5	Cloud	New York City	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R6	Cloud	New York City	Unhrid	High - SSH, MQTT, Modbus, CoAP
KO			Hybrid	Low - Telnet, HTTP
C2	Cloud	New York City	Medium	Telnet, SSH, HTTP, Modbus, S7
R 7	Cloud	Frankfurt	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R 8	Cloud	Frankfurt	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R9	Cloud	Frankfurt	Hybrid	High - SSH, MQTT, Modbus, CoAP
К3				Low - Telnet, HTTP
C3	Cloud	Frankfurt	Medium	Telnet, SSH, HTTP, Modbus, S7
R10	Cloud	Singapore	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R11	Cloud	Singapore	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R12	Cloud	Singapore	Hybrid	High - SSH, MQTT, Modbus, CoAP
K12	Cloud		riybriu	Low - Telnet, HTTP
C4	Cloud	Singapore	Medium	Telnet, SSH, HTTP, Modbus, S7

Table 2: Experimental setup overview

Background

- Problem
- Design
- Methodology

- Analysis
- Limitations

RIoTPot – adapting for the study

- Interactive setup and configuration shell
- Enhancing the emulation of SSH, Modbus, HTTP, MQTT, CoAP protocols
- Inclusion of verified docker images for the highinteraction emulation
- pcap analysis with Arkime and a pcap repository for extended packet-level capture and analysis

Lab Setup (Denmark)

Cybersecurity Research Group

cyber.aau.dk

	Sessions SPIView SPIGraph Connections Hunt Files Stats Upload								v4.0.0-GIT 💡 🚺 🔷	
Q	Q Search									
0	All (car	eful) Start	1969/12/31 18:0	0:00	End 2022/12/0	5 21:16:47	Bounding	Last Packet	Interval Auto	
50	per page	\$ (« < 1	2 3 4 5	> > Showing 1 - 50 of	63,550 entries					🗘 Fetch Viz Data 🔻
ŀ	tcp	2022/10/08 04:31:46	2022/10/08 04:31:47	10.70.10.107	52179	3.83.183.253 US	443	4	0 1,544	arkime-service-v aa11
F	tcp	2022/10/08 04:31:46	2022/10/08 04:31:47	192.168.10.1	443	10.70.10.107	52021	23	0 18,007	arkime-service-v aa11
H	tcp	2022/10/08 04:31:46	2022/10/08 04:31:46	10.70.10.107	51712	74.125.140.188 US	5228	2	0 121	arkime-service-v aa11
F	tcp	2022/10/08 04:31:45	2022/10/08 04:31:46	10.70.10.107	52203	204.79.197.200 US	443	40	0 42,181	arkime-service-v aa11
+	udp	2022/09/29 02:59:08	2022/09/29 02:59:08	169.254.251.241	57887	239.255.255.250	1900	1	175 217	arkime-service-v aa11
ŀ	udp	2022/09/29 02:59:08	2022/09/29 02:59:08	169.254.251.241	49171	224.0.0.252	5355	2	44 128	arkime-service-v aa11
ł	udp	2022/09/29 02:59:08	2022/09/29 02:59:08	169.254.251.241	52854	224.0.0.252	5355	2	44 128	arkime-service-v aa11
•	udp	2022/09/29 02:59:07	2022/09/29 02:59:07	192.168.0.1	67	255.255.255.255	68	2	1,096 1,180	arkime-service-v aa11

Background

Problem

Design

- Methodology
- Analysis
- Limitations

Dataset

• A comprehensive dataset of *pcaps* and events in database

- The database schema contains
 - Source IP address (attacker)
 - Destination IP addresses (honeypots, anonymized)
 - Source IP ports
 - Destination IP ports
 - Timestamps
 - Geolocation of the attacker IPs
 - Interaction level of the honeypots and protocols (where the attack event was observed)
 - Deployment environment information of the honeypots (Cloud/Lab)
 - IP layer traffic and flags
 - Transport layer traffic and flags
 - Application layer data transmitted

Data analysis

- The analysis was done on events recorded in json format in MongoDB
- The packet level inspection was done with Arkime
- The metadata for further analysis was requested from Greynoise

Combing/breakdown

Parameter: Geo-location, city, interaction level, events

- Sphere size denotes the number of daily events per day by interaction-level
- Iowest received: 743, highest: 13,287
- The lab instances received lower malicious events
- The Frankfurt instances (cloud) received the highest traffic overall

Parameter: Geo-location, lowest-highest, interaction-level

- Highest events recorded in Frankfurt, with High Interaction
- Lowest events recorded in lab deployment, with Lowinteraction
- Regardless, the High-interaction deployments received the highest events

Background

Problem

- Design
- Methodology
- Analysis
- Limitations

Limitations

- One Lab deployment environment; uneven comparison with the cloud deployments
- Limited to 4 cities in 3 continents
- 6 protocols
- We consider each connection as an event, entailing limitations in terms of over-counting
- Not in Netflow format (flexible integration)
- Sharing limitations; GDPR issues in Europe (IP is considered sensitive information)

Failures

- Hosting "vulnerable" instances is tricky
- The National CERTS don't want vulnerable instances around
- Also, in the cloud (ingress, egress rules)
- Cost!
- Monitoring

Summary

- Honeypots are still an effective tool ; if configured carefully
- The parameters play an important role in honeypots and honeypot studies
- Configuring the parameters based on studies provide a broader overview of the attack landscape

• Supplementary findings

- High-interaction honeypots receive higher attack events
- Location-specific attacks observed
- There is an increase in "scanning-service" traffic, many new services observed

Lessons learnt

- Deploying, managing and operating honeypots is challenging
- Attackers could exploit honeypots to launch attacks
- Deception-based systems are a great resource, however you must have a strategy and look for what you need
- Threat Hunting is a tedious task, especially when you have billion events per day
- The dataset is precious; however, the GDPR issues make the public sharing challenging Open Question!

References

- Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2021. Open for hire: attack trends and misconfiguration pitfalls of IoT devices. In Proceedings of the 21st ACM Internet Measurement Conference (IMC '21). Association for Computing Machinery, New York, NY, USA, 195–215. <u>https://doi.org/10.1145/3487552.3487833</u>
- Srinivasa, S., Pedersen, J. M., & Vasilomanolakis, E. (2021). RloTPot: a modular hybrid-interaction loT/OT honeypot. In 26th European Symposium on Research in Computer Security (ESORICS) 2021. Springer.
- Vetterl, A., & Clayton, R. (2018). Bitter harvest: Systematically fingerprinting low-and medium-interaction honeypots at internet scale.
 In 12th USENIX Workshop on Offensive Technologies (WOOT 18).
- S. Srinivasa, J. M. Pedersen and E. Vasilomanolakis, "Deceptive directories and "vulnerable" logs: a honeypot study of the LDAP and log4j attack landscape," 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 2022, pp. 442-447, doi: 10.1109/EuroSPW55150.2022.00052.

Acknowledgement

- Dr. Richard Clayton
- Dr. Alice Hutchings
- Cambridge Cybercrime Centre, University of Cambridge
- Rich, curated datasets on Internet scanning, honeypots, DarkWeb, DeepWeb and more...

More from our research group HosTaGe- an Interactive, mobile-based honeypot

Contact

• Shreyas Srinivasa

- shsr@es.aau.dk
- https://sastry17.github.io
- Datasets on Selective Internet Scanning, Honeypots, Darkweb (marketplaces, forums)

