ArchiveSafe LT: Secure Long-term
Archiving System

Moe Sabry, Reza Samavi

McMaster Toronto

Metropolitan

University University




Introduction and Motivation



Long-Term Archiving

* Every year the amount of digitally stored sensitive information increases significantly.

« Some governmental and legal documents, health and tax records are required to be securely
archived for decades to comply with various laws and regulations.

 Regular cryptographic schemes are not guaranteed to stay secure for such long time periods.

 Current solutions rely on information-theoretic techniques which require costly and complicated
iImplementations:
 Multi-server secret sharing
 Quantum key distribution (QKD)
* One time pads (OTP)



Gap and Motivation

* Problem:

* Long-Term secure archiving
Is essential but current
solutions are complicated Thought:

and costly. * |s there any other way to
prolong the lifespan of
standard cryptographic
schemes?

* |dea:
e Robust Combiners!



Robust Combiners

Plaintext Data H[

A Robust Combiner is a
combination of multiple
cryptographic schemes into B eme 1

one so the resulting scheme is Plaintext
robust to the failure of any of Data

the combined ones.




Contributions



Contributions

* To ensures long-term integrity and confidentiality without the complexity and cost of
private channels for QKD, OTP and secret sharing, we developed ArchiveSafe LT.

 ArchiveSafe LT is built on the novel idea of utilizing a pool of computationally-secure
schemes to build robust combiner for data encryption and integrity verification.

* ArchiveSafe LT provides significant performance improvement and cost reduction
compared to the currently available systems.



ArchiveSafe LT Framework



Framework Overview |

* ArchiveSafe LT defines an archive as a group of data files.

* The framework implements six operations to cover the archive life cycle:
e Initialize()
e Update()
 EvolveIntegrity()
 EvolveConfidentiality()
* Retrieve()
e Delete()



Framework Overview ||

* Files can be updated, deleted or retrieved individually without processing the
whole archive. A unique feature of ArchiveSafe LT.

 When a confidentiality scheme is compromised,
EvolveConfidentiality() is initiated to strengthen the combiner by
adding an additional secure scheme to it. Same idea for integrity.

10



Design | - Evolution

Data Owner Storage Provider
Policy: ((IT,,k,), (IL,k,),...) Archive: ((fcode,,C,),
Map: ((File,,L;,fcode,), (fcode,,C,),...)
(File,,Ls,fcode,),...) Integrity Object: Internal
Integrity Object: Tree root (r;) nodes (nodes)

File codes to be evolved

A4

Archived Files + nodes H:hA symmetric encryption
scheme

] k: secret key

verify L: Number of evolutions
fcode: File ID

&
<«

Evolve

Evolved Files + nodes’

+ @

11



Design | - Evolution

Data Owner Storage Provider
Policy: ((IT,,k,), (IL,k,),...) Archive: ((fcode,,C,),
Map: ((File,,L;,fcode,), (fcode,,C,),...)
(File,,Ls,fcode,),...) Integrity Object: Internal
Integrity Object: Tree root (r;) nodes (nodes)

File codes to be evolved

A4

Archived Files + nodes H:hA symmetric encryption
scheme

] k: secret key

verify L: Number of evolutions
fcode: File ID

&
<«

Evolve

Evolved Files + nodes’

+ @

12



Security Proofs



Security Proofs - Tamarin

* To ensure no adversarial scenario is missed, we utilized an automatic prover
(Tamarin*) for the confidentiality and integrity security proofs.

Protocol Model:
* Terms

* Facts
e Rules

R Tamarin
Model Checker

—

Bad
Scenarios

—

« Limitation: \We modeled up to two evolution processes.

* https://tamarin-prover.github.io/

14



Tamarin - Model

* Functions:

* KeyGen/2, Lock/3, Unlock/3 Lock(Schema, Key, Plaintext Data)

 Equations:
* Unlock(schemenum, KeyGen(schemenum, sk),
Lock(schemenum, KeyGen(schemenum, sk), data)) = data

* Rules:
* Oracles: OCorruptKey, OUpdate, OEvolve, ODelete, ORetrieve2/3, OForge2/3.
 Challenges: DistinguishChallenge, IntegrityChallenge.

15



Tamarin — Confidentiality Lemma

All fname fcontents #tchallenge

ChallengeStored(fname, fcontents) @ #tchallenge
& not(Ex #tr . RetrievedContents(fname, fcontents) @ #tr)
& not(
(Ex #tga #tcl #tc2 . GotArchive(fname, '2') @ #tga &
Corrupted('1l') @ #tcl & Corrupted('2') @ #tc2)
| (Ex #tga #tc2 #tc3 . GotArchive(fname, '3') @ #tga &
Corrupted('2') @ #tc2 & Corrupted('3') @ #tc3))
==>
not(Ex #tk . K(fcontents) @ #tk)

16



Tamarin — Integrity Lemma

All fname layerl layer2 fcontents #tforgeanswer

ForgeAnswer(fname, layerl, layer2, fcontents) @ #tforgeanswer
==>
(Ex fname2 #tstored . Stored(fname?2, fcontents) @ #tstored)
| (Ex #tcl #tc2 . Corrupted(layerl) @ #tcl & Corrupted(layer2) @ #tc2)

17



Experimental Evaluation



Evaluation Experiment

* Objectives:

» We measure the system's performance through an experiment mimicking the evolution of an
archive.

 We benchmark the system performance against the state-of-the-art- systems.

e Scenario:
* 1992: Initial creation using DES + 3DES and MD2 + MD5.
* 2001: 1t evolution using AES-128 and SHA-256.
« 2004: 2" evolution using AES-192 and SHA-384.
« 2015: 3" evolution using AES-256 and SHA3-512.

19



Evaluation Experiment Setup

* The experiment was performed using HP Z420 (Ubuntu Linux 20.04.3 LTS, 8-core
Intel Xeon CPU E5-1620 3.6 GHz, 32 GiB RAM, 1 TB SSD).

* We performed 100 repetitions of the following tasks:
1000 sample files of each size were randomly generated.

 \We measured times for:
* [nitial creation.
 Evolution.
 Retrieval.

20



Evaluation Experiment Flow

Sample Files
Generation

Initial Creation Eal3RQGECON 15t Evolution C,=Enc(C) 2"d Evolution CSACFIN 3" Evolution
AES-128,SHA-256

DES+3DES,MD2+MD5 AES-192,SHA-384 AES-256,SHA3-512

C;=Enc(C,)

1st Retrieval , 2"d Retrieval 3rd Retrieval

Final Retrieval

A

21




Evaluation Experiment Challenges

* Could not have access to the state-of-the-art environments (QKD & private channels).

* Could not have access to the state-of-the-art experimental data.

 Approach:

 We used the same data point (file sizes) provided in the other systems’ researches for
benchmarking.

22



Results — Performance & Space |

LINCOS?, :
PROPYLA?, ELSA? ArchiveSafe LT Trend
Creation Time 55.2 Hrs. 7.7 Hrs. (+ 2%) Improvement increases
with larger archive sizes
Evolution 110.4 Hrs. 0.7 Hrs. (£ 2%) Improvement increases
Time with larger archive sizes
Storage Space 3X 1x Improvement increases

with more shares

ArchiveSafe LT time & space utilization compared to other systems
On a 158 GB Archive

[1] Braun, Johannes, et al. "LINCOS: A storage system providing long-term integrity, authenticity, and confidentiality."
[2] Geihs, Matthias, et al. "Propyla: privacy preserving long-term secure storage."
[3] Muth, Philipp, et al. "ELSA: efficient long-term secure storage of large datasets."

23



Results — Performance & Space |l

| SAFE' | ArchiveSafelT

Creation Time 10 Sec. 3.3 Sec. (+ 2%) Improvement increases
with larger archive sizes

Evolution Time 109 Sec. 3.2 Sec. (+ 2%) Improvement increases
with larger archive sizes

Storage Space 3X 1x Improvement increases
with more shares

ArchiveSafe LT time & space utilization compared to SAFE (TEE)
On a 10 MB Archive

[4] Buchmann, Johannes, et al. "SAFE: A Secure and Efficient Long-Term Distributed Storage System."

24



ArchiveSafe LT: Secure Long-term Archiving System

* A system providing long-term integrity and confidentiality through robust combiners.
» Utilizes standard cryptographic schemes.

* Can be utilized for in-house or outsourced storage.

» Better performance and space utilization than similar systems.

» We gratefully acknowledge Dr. Douglas Stebila for many helpful comments and
discussions on this paper.

Authors: Moe Sabry (alym2@mcmaster.ca), Reza Samavi (samavi@ryerson.ca)
*Full version: http://

Thank you!

25


mailto:alym2@mcmaster.ca
mailto:samavi@ryerson.ca

