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Introduction

* Intrusion logs and threat intelligence reports
have been developed to assist security analysts

* Description In these logs and reports, however,
can be cryptic and not easy to interpret. Thus:

We ask:

Given a description of cyberattack techniques,
how to Interpret the iIntended effects (MITRE
Tactics [1])?

 E.0.,.1, Initialization scripts can be used to perform
administrative functions, which may often execute
other programs or send information to an internal
logging server.

 E.0.,2, Custom Outlook forms can be created that will
execute code when a specifically crafted email is sent.

Privilege Escalation? Persistence? Both?

Related Works

PATRL (Pseudo-Active Transfer Learning) [2]

* A semi-supervised process leveraging ULMFIT
[3] to determine the attack stage of IDS alert
signatures

BERT [4]
* A Transfer Learning technique to uncover the
semantic information conveyed In a sentence

EXBERT [5]

* A framework that applies Transfer Learning to
BERT to predict exploitability

* Word embedding for the pre-trained and fine-
tuned BERT with cybersecurity words
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1nd component

SecBERT [6]
A BERT model trained on cybersecurity texts

SecureBERT [7]

* A language model based on RoBERTa [8] that
IS trained on cybersecurity texts

Methodology
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[SEP]
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€[SEP]
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« Multi-Label Classification for the total of 14 MITRE Tactics
« Total of 4500+ Descriptions with their corresponding tactic(s)
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-With Overlaps TOTAL: 35971

« Pair-wise overlap for MITRE tactic descriptions
« Diagonal values correspond to the single-tactic descriptions

 Some descriptions match to two or more tactics. Hence, the
total of 5971 instances are more than the curated descriptions

Results
Model: BERT SecBERT SecureBERT
Avg. Training Loss 0.01 0.01 0.01 Table.1. Results for
running the three
Avg. Test Loss 0.15 0.16 0.15 BERT models with 30
Abs. A 063 0.5 0.5 epochs using 5-fold
>- Accuracy ' . ' cross-validation.
Micro Avg. F1 Score 0.75 0.72 0.76
Per Tactic F1 Score: BERT SecBERT SecureBERT

COLLECTION 0.68 0.63 0.68
C2 0.75 0.73 0.75
Table.2. Results CRED _ACC 0.74 0.72 0.76
score for the three DISCOVERY 0.73 0.66 0.75
EXECUTION 0.72 0.64 0.71
models to measure EXFILTRATION 0.59 0.57 0.57
the differences In IMPACT 0.77 0.75 0.82
Values for Single_ INI_ACC 0.64 0.62 0.65
: LAT MOV 0.57 0.56 0.59
label and_ m ult PERSISTENCE 0.78 0.73 0.78
label descriptions. PRIV_ESC 0.72 0.72 0.74
RECON 0.89 0.83 0.88
RES DEV 0.85 0.85 0.85

Observations & Future Works

Based on the Results:

o The 0.76 Micro F1 score in SecureBERT Is promising In capturing semantic
features of cybersecurity descriptions and dealing with multi-label data.

o The models could reasonably capture overlapping MITRE tactic descriptions

Future Works:

How to 1) better reflect the model’s performance, 2) treat limited labeled data, 3)
leverage label semantics, and 4) use a novel NSP-tuning approach to predict the
Intended consequences.
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