Global Cybersecurity Institute

Translating Cybersecurity Descriptions into Interpretable MITRE Tactics using Transfer Learning

Introduction

- Intrusion logs and threat intelligence reports have been developed to assist security analysts
- Description in these logs and reports, however, can be cryptic and not easy to interpret. Thus:

We ask:

Given a description of cyberattack techniques, how to interpret the intended effects (MITRE **Tactics** [1])?

- E.g.,1, Initialization scripts can be used to perform administrative functions, which may often execute other programs or send information to an internal logging server.
- E.g.,2, Custom Outlook forms can be created that will execute code when a specifically crafted email is sent.

Privilege Escalation? Persistence? Both?

Related Works

PATRL (Pseudo-Active Transfer Learning) [2]

• A semi-supervised process leveraging ULMFiT [3] to determine the attack stage of IDS alert signatures

BERT [4]

• A Transfer Learning technique to uncover the semantic information conveyed in a sentence

ExBERT [5]

- A framework that applies Transfer Learning to **BERT** to predict exploitability
- Word embedding for the pre-trained and finetuned BERT with cybersecurity words

SecBERT [6]

• A BERT model trained on cybersecurity texts

SecureBERT [7]

• A language model based on RoBERTa [8] that is trained on cybersecurity texts

Cyberattack Technique Description

Custom Outlook forms can be created that will execute code when a specifically crafted email is sent

• Multi-Label Classification for the total of 14 MITRE Tactics • Total of 4500+ Descriptions with their corresponding tactic(s)

PERSI PRIV DEF COLLI CREI EXEC LT_ INI DISCO IMP RE EXFILT RES

Reza Fayyazi, Yiyuan Steve Wufeng, Pradumna Gautam, Shanchieh Jay Yang

	PERSISTENCE	PRIV_ESC	DEF_EVA	COLLECTION	CRED_ACC	EXECUTION	LT_MOV	INI_ACC	DISCOVERY	C2	IMPACT	RECON	EXFILTRATION	RES_DEV	TOTAL #TACTIC
ISTENCE	235	356	185	0	17	57	13	39	0	0	0	0	0	0	847
V_ESC	356	33	243	0	0	13	0	13	0	0	0	0	0	0	620
F_EVA	185	243	760	0	57	24	56	39	39	19	2	0	0	0	1377
LECTION	0	0	0	237	116	0	0	0	15	6	0	0	0	0	374
D_ACC	17	0	57	116	297	0	0	0	23	0	0	0	0	0	493
CUTION	57	13	24	0	0	234	12	0	0	0	0	0	0	0	332
MOV	13	0	56	0	0	12	134	25	0	0	0	0	0	0	240
I_ACC	39	13	39	0	0	0	25	179	0	0	0	0	0	0	269
OVERY	0	0	39	15	23	0	0	0	243	0	0	0	0	0	320
C2	0	0	19	6	0	0	0	0	0	241	0	0	0	0	266
PACT	0	0	2	0	0	0	0	0	0	0	276	0	0	0	278
ECON	0	0	0	0	0	0	0	0	0	0	0	196	0	0	196
TRATION	0	0	0	0	0	0	0	0	0	0	0	0	95	0	95
S_DEV	0	0	0	0	0	0	0	0	0	0	0	0	0	264	264
		No C	overla	ps			With	Over	laps				то	TAL:	5971

Pair-wise overlap for MITRE tactic descriptions

• Diagonal values correspond to the single-tactic descriptions Some descriptions match to two or more tactics. Hence, the total of 5971 instances are more than the curated descriptions

Results

Model:	<u>BERT</u>	<u>SecBERT</u>	<u>SecureBERT</u>
Avg. Training Loss	0.01	0.01	0.01
Avg. Test Loss	0.15	0.16	0.15
Abs. Accuracy	0.63	0.59	0.65
Micro Avg. F1 Score	0.75	0.72	0.76

	Per Tactic F1 Score:	BERT	<u>SecBERT</u>	<u>SecureBERT</u>	
	COLLECTION	0.68	0.63	0.68	
	C2	0.75	0.73	0.75	
Table.2.Results	CRED_ACC	0.74	0.72	0.76	
for per-tactic F1	DEF_EVA	0.78	0.77	0.79	
▲	DISCOVERY	0.73	0.66	0.75	
score for the three	EXECUTION	0.72	0.64	0.71	
models to measure	EXFILTRATION	0.59	0.57	0.57	
the differences in	IMPACT	0.77	0.75	0.82	
values for single-	INI_ACC	0.64	0.62	0.65	
label and multi-	LAT_MOV	0.57	0.56	0.59	
	PERSISTENCE	0.78	0.73	0.78	
label descriptions.	PRIV_ESC	0.72	0.72	0.74	
	RECON	0.89	0.83	0.88	
	RES_DEV	0.85	0.85	0.85	

Based on the Results:

- The 0.76 Micro F1 score in SecureBERT is promising in capturing semantic features of cybersecurity descriptions and dealing with multi-label data.
- The models could reasonably capture overlapping MITRE tactic descriptions

Future Works:

How to 1) better reflect the model's performance, 2) treat limited labeled data, 3) leverage label semantics, and 4) use a novel NSP-tuning approach to predict the intended consequences.

References

[1] "MITRE ATT&CK[®]." https://attack.mitre.org/ (accessed Nov. 06, 2022).

[2] S. Moskal, S. Y.-2021 I. C. on, and undefined 2021, "Translating Intrusion Alerts to Cyberattack Stages using Pseudo-Active Transfer Learning (PATRL)," ieeexplore.ieee.org, Accessed: Sep. 13, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9705037/

[3] J. Howard and S. Ruder, "Universal Language Model Fine-tuning for Text Classification," ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), vol. 1, pp. 328-339, Jan. 2018, doi: 10.48550/arxiv.1801.06146.

[4] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1, pp. 4171–4186, Oct. 2018, doi: 10.48550/arxiv.1810.04805.

[5] J. Yin, M. J. Tang, J. Cao, and H. Wang, "Apply transfer learning to cybersecurity: Predicting exploitability of vulnerabilities by description," Knowledge-based systems, vol. 210. Elsevier B.V., Dec. 27, 2020. doi: 10.1016%2Fj.knosys.2020.106529.

[6] "SecBERT: pretrained BERT model for cyber security text, learned Cybersecurity Knowledge." https://github.com/jackaduma/SecBERT (accessed Oct. 02, 2022).

[7] E. Aghaei, E. Al-Shaer, X. Niu, and W. Shadid, "SecureBERT: A Domain-Specific Language Model for Cybersecurity Malware Deception View project Covert Communication using Network Behavioral Patterns", Accessed: Nov. 01, 2022. [Online]. Available: https://github.com/ehsanaghaei/SecureBERT

[8] Y. Liu et al., "RoBERTa: A Robustly Optimized BERT Pretraining Approach," Jul. 2019, doi: 10.48550/arxiv.1907.11692.

