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int fun(int a) {

 …

 // trace the indirect

 // jump to the caller

 trace(ret_addr(0));

 return 0;

}

key_t prv_key;

void trace(uint8_t addr) {

   msg_t msg = encr(addr, prv_key);

   send_to_monitor(msg);

   prv_key = hash(prv_key);

}
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Use Case # functions % CFG explored # fun. static

Contact 71 96.4% 1

libdvdcss 56 91.4% 9

StealthDB 44 96.6% 0

SGX-Biniax2 49 91.6% 4

Unit-test 17 94.0% 0

Symex explores the majority of the functions
We fallback to static analysis only for few cases

Is it under attack?

Is target OK?

Macrobenchmark over StealthDB (PostgreSQL’s SGX plugin)
has limited overhead

Messages are chained, losing one reveals an attack.
They all have the same size, so no information of their content.

Properties guaranteed:

1) Secure streaming of runtime information

2) Detecting code-reuse attacks

Adversaries use memory corruption errors to mount code-reuse attacks

External observers cannot distinguish correct and hijacked executions


