
Evaluation: Overhead

Design: Tracing

Evaluation: Model

Design: Streaming

DesignSGX Prohibits Provenance

Designing a Provenance
Analysis for SGX Enclaves

Flavio Toffalini, Mathias Payer, Jianying Zhou, Lorenzo Cavallaro

Partially Sponsored By

ACSAC 2022

Enclave

???

Model
Target

Enclave
Monitor
Enclave

Remote Entity

Target
Enclave

Extract
correct

behavior

Offline Analysis Online Verification

int fun(int a) {

 …

 // trace the indirect

 // jump to the caller

 trace(ret_addr(0));

 return 0;

}

key_t prv_key;

void trace(uint8_t addr) {

 msg_t msg = encr(addr, prv_key);

 send_to_monitor(msg);

 prv_key = hash(prv_key);

}

Monitor Enclave
M

Monitor
Enclave

Target
Enclave

Runtime Information

enc(k2)enc(k1)

k1 = init_synk k2 = hash(k1)

Use Case # functions % CFG explored # fun. static

Contact 71 96.4% 1

libdvdcss 56 91.4% 9

StealthDB 44 96.6% 0

SGX-Biniax2 49 91.6% 4

Unit-test 17 94.0% 0

Symex explores the majority of the functions
We fallback to static analysis only for few cases

Is it under attack?

Is target OK?

Macrobenchmark over StealthDB (PostgreSQL’s SGX plugin)
has limited overhead

Messages are chained, losing one reveals an attack.
They all have the same size, so no information of their content.

Properties guaranteed:

1) Secure streaming of runtime information

2) Detecting code-reuse attacks

Adversaries use memory corruption errors to mount code-reuse attacks

External observers cannot distinguish correct and hijacked executions

