
• We propose an intermediate representation to abstract semantics of 

WebAssembly applications that enables syntax-resilient analysis.

• We construct a diverse dataset of WebAssembly samples from real-world 

websites, Firefox add-ons, Chrome extensions, and GitHub repositories.

• We perform a comprehensive analysis of the collected WebAssembly 

samples to classify them into 10 categories.

• We develop an automated classification tool, WAspur, that can accurately 

label a given WebAssembly function with a function name indicative of 

to its functionality and find it can achieve an 87.4% accuracy rate.

Automated WebAssembly Function Purpose Identification
Alan Romano and Weihang Wang

University of Southern California

Introduction

WebAssembly (abbreviated Wasm) is the newest web standard and defines 

compact bytecode format to serve as a compilation target for other languages 

such as C, C++, and Rust. WebAssembly also defines a text format meant to 

ease understanding for debugging, but the low-level structure and terse syntax 

of the language make it challenging to understand. To aid developers in 

understanding the functionalities of WebAssembly modules, we construct 

WAspur, a tool to automatically identify the purposes of WebAssembly 

functions. Specifically, we construct and analyze an extensive and diverse 

collection of WebAssembly modules. We then construct semantics-aware 

intermediate representations (IR) of the functions. Finally, we encode the 

function IR for use in a machine learning classifier. We hope our tool will 

enable efficient inspection of optimized and minified WebAssembly modules.

WAspur

WAspur leverages a semantics-resilient intermediate representation (IR) 

designed to capture the effects produced by WebAssembly instructions. 

WASPur classifies the functions in a WebAssembly module using two main 

components. The Abstraction Generator collects the abstractions for all 

functions within the module to represent each function in our IR. The 

Classifier inputs the sequence of IR units into a neural network classifier.

Data Collection Methods

Our abstractions model WebAssembly stack, linear memory, and control flow.

Variable Instructions We model the instructions that store values into 

variables abstractions that record the value and location stored. We model the 

instructions that load values from variables through their effect on the virtual 

stack. Symbolic execution models the effects as parametric expressions with 

variable names and referenced memory locations as parameters.

Control Instructions We use separate abstractions to model the instructions 

that impact the control flow, such as if, loop, block, and call. We also model 

the change in scope caused by the control flow constructions by storing 

subsequent abstractions within them. 

Memory Instructions We model the instructions that load and store into 

linear memory using similar abstractions as the variable instructions. Since 

WebAssembly applications frequently use consecutive memory copies and 

accesses, we merge adjacent store abstractions to highlight this functionality.

Classification Results

Conclusion

Using the classifier, a WebAssembly function can be used to categorize the 

originating module from one of 12 use case categories:

Use Case Purpose

Compression Performs data compression operations.

Cryptography Performs cryptographic operations (e.g., hashing).

Game Implements stand-alone online games.

Text Processing Performs text or word processing.

Image Processing Analyzes or edits images.

Numeric Processing Provides mathematical or numeric functions.

Support Test Stub Probes environment for WebAssembly support.

Standalone Apps Independent standalone programs.

Auxiliary Library Provides data structures or utility functions.

Cryptominer Performs cryptocurrency-mining operations.

Code Carrier Stores JavaScript/CSS/HTML payloads.

Unit Test Ensures conformance to language specification.

Source # of Samples Inspected # of Wasm Samples

Websites 1,000,000 4,520

Chrome Extensions 17,862 90

Firefox Add-ons 16,385 43

GitHub 112,663,634 2,116

Total 113,697,881 6,769

Abstraction Generator

The classifier can predict the similarity of given function against known 

names with an accuracy rate of 87.4%. 

In order to automatically identify and classify WebAssembly function 

purposes, we construct a dataset of WebAssembly modules from various 

sources to train the classifier. 

Future Work

Currently, WAspur only uses the IR of the instructions defined within 

WebAssembly functions. We can later include other information from the 

remaining WebAssembly module sections as well. For example, including the 

function types within the abstraction sequence may improve predictions.
Classifier

We use the abstractions obtained for each WebAssembly function to train a 

neural network classifier on the module purposes. To input into the neural 

network, we encode the abstraction as a sequence produced when traversing 

the abstractions for a function.


