R I T \ Global Cybersecurity Institute

Cross-Organizational Continual Learning of Cyber Threat Models
Chanel Cheng, Shanchieh Jay Yang

Introduction

* Intrusion detection systems are developed to
help detect cyber threats across networks.

* Yet, cyber threats evolve over time and follow
different patterns across various organizations.

o Continuous detection of changing data is
difficult by traditional means!!

Consider:

An incoming stream of network traffic from two
different organizations.

e Similar attack types have different patterns
across organizations

e New attack types are also present in each
organization

Stream encounters both gradual and sudden
changes in attack patterns

Related Works

PNNs / EWC /SI/i1CaRL/ GEM

e PNNs!?! - constructs new networks as novel tasks
occur, resulting 1n linearly increasing memory
requirement.

e EWC & SIP* - extends loss function with a term
that consolidates selective network weights, but
requires explicit task boundaries.

e iCaRLP! - combined use of replay and distillation
but still requires explicit task boundaries.

« GEM!® - builds optimization constraints using old
data but less effective across shifting domains.
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Experience Replay (ER)

 ER!I eliminates need for task boundaries, test time
oracle, and enforces constant memory footprint.

* Potentially more suited for real-world scenarios
with gradual and sudden shifts in data.
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Figure.l. Example data stream for task-agnostic continual learning on
network traffic flow from CIC-IDS-2018!% and USB-IDS-2021"]

* Two datasets were converted into a single data stream for
continual learning without task boundaries.

o Regular benign traffic and malicious traffic are present together
in stream (with benign as the majority of tratfic)

o Order and source of data does not matter for our continual
model in learning the attack types
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Figure.2. Flow diagram for the continual learning strategy.

* Replay buffer of fixed size with older samples replaced as new
samples are selected to the buffer.

* Only expert-labeled samples saved to the buffer train and update
the model.

[ J
Experiment & Results
1
(a) - ® Benign
0 08 ® Malicious
Q.
E 07
e
i 0.6
L®)
U 05
(O
v 04
© 03 I
o
§ 0.2
SRR N
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14
iteration
(b)
0.9
0.8
0.7
© 06
S 0.5 === Benign
W ' = D0S-Hulk
— 04
” - DoS-Slowloris
01‘2 == D0S-SlowHttpTest
0.1 DoS-GoldenEye
0 DoS-TCPFlood
0 1 13 14

iteration

Figure.3. (a) Average ratio of samples saved to buffer and (b) fl-score for network traffic
classification as new DoS classes were introduced over 14 iterations.

Observations & Future Works

o By the 10th 1teration, no more samples are required to be labeled, while most
of the Fl-scores reach above 0.9 except DoS-GoldenEye (~0.88) and
DoS-Slowloris (~0.8), both of which have a much smaller sample size.

o This learning strategy largely reduces the number of labeled data needed and
can quickly reach good prediction performance.

Future Works:

1) Expand the experiment to include more attack types, 2) further investigate class
imbalance 1ssue, and 3) optimize the sampling strategy for replay buffer.
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