Cross-Organizational Continual Learning of Cyber Threat Models

Chanel Cheng, Shanchieh Jay Yang

Introduction

- Intrusion detection systems are developed to help detect cyber threats across networks.
- Yet, cyber threats evolve over time and follow different patterns across various organizations.
 - Continuous detection of changing data is difficult by traditional means\(^1\)

Consider:

An incoming stream of network traffic from two different organizations.

- Similar attack types have different patterns across organizations
- New attack types are also present in each organization

Stream encounters both gradual and sudden changes in attack patterns

Related Works

PNNs / EWC / SI / iCaRL / GEM

- PNNs\(^6\) - constructs new networks as novel tasks occur, resulting in linearly increasing memory requirement.
- EWC & SI\(^5,6\) - extends loss function with a term that consolidates selective network weights, but requires explicit task boundaries.
- iCaRL\(^3\) - combined use of replay and distillation but still requires explicit task boundaries.
- GEM\(^3\) - builds optimization constraints using old data but less effective across shifting domains.

Methodology

Table 1. Side-by-side comparison of continual learning strategies\(^3\)

<table>
<thead>
<tr>
<th>Methods</th>
<th>PNN</th>
<th>P2Net</th>
<th>BIL</th>
<th>ER</th>
<th>GS5</th>
<th>GEM</th>
<th>HAL</th>
<th>Cali</th>
<th>FDR</th>
<th>Gd</th>
<th>Sl</th>
<th>iCaRL</th>
<th>GEM</th>
<th>DERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant memory</td>
<td>-</td>
</tr>
<tr>
<td>No task boundaries</td>
<td>-</td>
</tr>
<tr>
<td>No task oracle</td>
<td>-</td>
</tr>
</tbody>
</table>

Experiment & Results

Figure 1. Example data stream for task-agnostic continual learning on network traffic flow from CIC-IDS-2018\(^8\) and USB-IDS-2021\(^9\)

- Two datasets were converted into a single data stream for continual learning without task boundaries.
 - Regular benign traffic and malicious traffic are present together in stream (with benign as the majority of traffic)
 - Order and source of data does not matter for our continual model in learning the attack types

Observations & Future Works

- By the 10th iteration, no more samples are required to be labeled, while most of the F1-scores reach above 0.9 except DoS-GoldenEye (~0.88) and DoS-Slowloris (~0.8), both of which have a much smaller sample size.
- This learning strategy largely reduces the number of labeled data needed and can quickly reach good prediction performance.

Future Works:

1) Expand the experiment to include more attack types, 2) further investigate class imbalance issue, and 3) optimize the sampling strategy for replay buffer.

References

Table 2. Aggregate port mapping and one-hot encoding maps the most commonly used port numbers to their corresponding port services and one-hot encodes them as features for the model to learn from.

<table>
<thead>
<tr>
<th>Port Service</th>
<th>Port #</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS</td>
<td>53</td>
</tr>
<tr>
<td>HTTP</td>
<td>80, 8080</td>
</tr>
<tr>
<td>https</td>
<td>443, 8443</td>
</tr>
<tr>
<td>smb</td>
<td>139, 137</td>
</tr>
<tr>
<td>Rtp</td>
<td>20, 21</td>
</tr>
<tr>
<td>ssh</td>
<td>22</td>
</tr>
<tr>
<td>ltm</td>
<td>5555</td>
</tr>
<tr>
<td>other</td>
<td>(unassigned port #s)</td>
</tr>
</tbody>
</table>