
Mina Soltani Siapoush, Jim Alves-Foss
Center for Secure and Dependable Systems

Introduction
System calls (syscalls) are a critical mechanisms for
modern Operating Systems (OS), including not only
microkernels such as seL4, QNX, and Fuchsia where
system functionalities are deployed in the user-level
workflow but also monolithic kernels like Android
where apps often communicate with most of the
user-level services. However, existing syscall designs
still suffer from long latency and less protection. To
address the problem, we are exploring mechanisms
for a new approach that is fast and secure.

Design
We propose a separation of the checking logic into a
control plane and a data plane, in which the former is
done by software and the latter by hardware.

▪ Control Plane
The OS kernel is responsible for controlling tasks,
ensuring that the mapped region will never be
overlapped by any mapping of the page table, and
managing hardware extension. The OS kernel is
responsible for ensuring that the mapped regions,
implemented in the data plane, will never overlap,
allowing for complete isolation.

▪ Data Plane:
We use a new address-space mapping mechanism
named relay segment which is a memory region with
its virtual address ranges and physical address ranges.
The address range information is recorded in
Segment Register (Segment-reg), and an extension in
MMU is responsible for translating the virtual
addresses into physical addresses using Segment-reg.
Segment-reg can be passed from a caller to a callee
through syscall execution.

Security

▪ Secure isolation.
▪ Prevention of race condition vulnerabilities.
▪ Prevention of other common vulnerabilities.

Efficiency
▪ Support long messages along the call chain.
▪ Fine-grained message granularity.
▪ Limited copying times (fast syscall).

Flexibility
▪ Independent of specific kernel architectures.
▪ Minimal hardware modifications.

www.uidaho.edu/csds

csds@uidaho.edu

(208) 885-4114

Research Goals

Fig.1. (a) Traditional system call, (b) Our design with zero copy message passing.

Software implementation
Software components include kernel support to
manage entry, call-cap, relay-segment, and exception
handling. Syscall provides register_entry and
unregister_entry which allocate and free a relay
segment, grant_service and revoke_service grant and
revoke the syscall capabilities to other threads.

Hardware implementation
• The syscall engine checks the caller’s capability by 

reading the bit at #reg in the cap bitmap.
• Processor loads the target entry from entry-table (a 

global table indicated by entry-table-reg and checks 
the valid bit of the entry.

• Processor prepares a linkage record to record the 
caller’s information and pushes it to the link stack. 

• Processor updates states according to the fetched 
entry, including page table pointer, program 
counters, and others.

The OS implementation is small as it only affects
system call-related modules in kernel. It will not affect
other modules such as file system, memory and
address space management, etc.

Project is still in design stage.

Evaluation

Implementation
Fig.2. Syscall engine.


	Slide 1

