
Introduction

❑ Cyber-attacks have evolved to become more effective 

against Cyber Physical Systems (CPS).

❑ This creates a new area of concern, as cyber-threats can 

potentially disrupt physical assets digitally. Example include 

Stuxnet Attack, Colonial Pipeline attack.

❑ Reliance on Digital Twin (DT) devices for automotive, 

military, and medical functions has increased the potential 

risk of adverse effects, if compromised.

❑ We demonstrate a white-box adversarial attack against

our DT system using a Machine Learning (ML) model as a 

proof-of-concept.

Approach

❑ Data-driven DT are an important concept in the automotive 

industry because of their predictive abilities.

❑ The robustness of these DT models against adversarial 

input samples* should be thoroughly tested.

❑ We demonstrate the vulnerability of these systems and how 

they can be targeted by an adversary in a white-box attack 

scenario.

❑ We attack a trained DT model with an adversarial sample and 

demonstrate how easily the classifier can be tricked into 

misclassifying normal observation as an anomaly.
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❑ We preprocess vehicular sensor channel data (x). 

❑ We consider four subsystems such as Engine, 

Transmission, Fuel, and Brake. 

❑ 15 sensor channels are selected for training and modeling. 

For example, Engine Coolant Temperature, Accelerator 

Pedal Position, Transmission Oil Temperature, 

Transmission Selected Gear, Fuel Rate, Injector 

Control Pressure, Brake Switch, etc. 

❑ Processed data (x) is then fed to neural network function f.
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❑ Deep Learning (DL) model is trained using preprocessed 

sensor channel data (x) as input. 

❑ Resulting DL model is a trained DT.

❑ DT model can be used to: 

✓ Investigate, monitor, and forecast sensor 

channels behavior.

✓ As well as predictive maintenance step. 

❑ Abnormal sensor channels detected in this phase can be 

passed to expert for further analysis. 

❑ The real-world adversary         may alter input data (x) .

❑ Adversary can add just enough noise to the input to cause 

DT model to misclassify* normal observation as anomaly

❑ Misclassification step:

✓ Input: Adversarial input sample* (x’= x + δx) is 

fed to trained model f.

✓ Output: f(x’) is misclassified.

❑ An *adversarial sample is the small perturbation to

the input (x) used by function f to predict or forecast

that results in misclassified predictions.

❑ We randomly perturb the inputs to the trained model.

❑ Adversarial robustness of DT is checked in this step. 

❑ Perturbation steps:

✓ Calculate standard deviation (σ) for each 

sensor channel in input sequence (x).

✓ Gaussian white noise* is added to input 

sequence. 

❑ Gaussian white noise* is determined by sampling from 

normal distribution centered at zero,                .𝓝 𝟎,𝝈𝟐

Results
❑ Robustness of DT is evaluated against test sequences 

perturbed with white noise.

❑ Test sequences contain observations from all 15 sensor 

channels.

❑ Relationship between Fuel Rate, Accelerator Pedal Position, 

and Transmission Selected gear is investigated and 

perturbed. 

Sensor Channels

❑ FuelRate
❑ InstFuelEco
❑ InjCtlPres
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Engine
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❑ IntManfTemp
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❑ TransOilTemp
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❑ TrOutShaftSp
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Normal Input Sequence

❑ For normal input sequence the model predicts NORMAL with 

a Mahalanobis distance of 5.79.

Perturbed Input Sequence

❑ For perturbed input sequence the model predicts ANOMALY

with a Mahalanobis distance of 9.72.


