Qo Acsac 2022

DF-SCA: Dynamic Frequency
Side Channel Attacks are
Practical

Debopriya Roy Dipta and Berk Gulmezoglu

roydipta@iastate.edu bgulmez@iastate.edu

g@@g IOWA STATE UNIVERSITY, IA, USA

mailto:roydipta@iastate.edu

What is Side Channel Attack?

e Side-channel attacks use unintentional information leakage

from secure chips to compromise their security

 Compromising security:
v’ Cryptographic key recovery
v' Website fingerprinting
v’ Keystroke detection

* These unintentional information can be of different types:

v" Timing information

v Power dissipation

v’ Electromagnetic fields

v Micro-architectural information

Security Boundary

Cryptographic Operation
& Input Data (e.g., Encryption) Output Data

= “Main”
Channel
(e.g., Plaintext) (e.g., Ciphertext)
\ /l Unintended “Side" Channel(s)
Timing Information
Power Dissipation

Electromagnetic Fields

Side-Channel Analysis %

4

Ref: Gamaarachchi, H. and Ganegoda, H., 2018. Power analysis-based side channel
attack. arXiv preprint arXiv:1801.00932.

L Micro-architectural side-channel attacks refer to a side-
channel attack that exploit information leakage from
the hardware infrastructure itself

DF-SCA: Dynamic Frequency Side Channel

e Software-based dynamic frequency side-channel attack
* Applicable on Linux and Android OS devices
* Exploit unprivileged access to cpufreq interface

* Exploited in the context of covert channels and

cryptographic attacks
* However, it has not been investigated to infer user
activity, e.g.,
» Website fingerprinting
» Keystroke detection

CHALLENGE I

v'Noisy measurements

v'Low resolution
O Still dynamic frequency readings through Linux

cpufreq interface provide sufficiently-detailed
information on the user activity on Intel, AMD,
and ARM architectures.

Dynamic Voltage and Frequency Scaling (DVFS)

« Allow switching between different frequency/voltage configurations based on the dynamic CPU resource demand.

* The rapid frequency changes are adjusted through different algorithms depending on the target application

CPUFreq Subsystem:

* Responsible for the performance scaling of the CPU in a Linux kernel-based operating system

* Comprises of three layers of code:
v' Core: Defines the layout of basic framework
v" Scaling governor: Defines different frequency scaling algorithms to predict the CPU latency
v" Scaling driver: Access a specific hardware interface to change the P-state based on the request set forth by the

scaling governors

Dynamic Voltage and Frequency Scaling (DVFS)

PolicyX Interface:

CPUFreq core generates a sysfs directory named cpufreq, under /sys/devices/system/cpu path
Within this directory a policyX sub-directory exists for all of the CPUs associated with the given policy
policyX directories include policy-specific files to control CPUFreq behavior based on the corresponding policy objects.

CPUFreq core generates several attributes dependent on the scaling governors and drivers, such as:

v’ scaling_cur_freq v’ scaling_available _governors

v’ scaling_min_freq v’ scaling_governor

v’ scaling_max_freq v’ scaling_driver

Dynamic Voltage and Frequency Scaling (DVFS)

Scaling governor:

* Performance governor keeps the CPU around the highest frequency, within the scaling_max_freq policy limit

* Powersave governor keeps the core frequency low when there is no workload still within the scaling_min_freq policy
limit.

* Userspace governor allows userspace application to set the CPU frequency for the associated policy

* Ondemand governor uses CPU load to determine the CPU frequency selection metric

* Conservative governor sets the CPU frequency selection metric based on the CPU load.

* Interactive governor is designed for latency-sensitive, interactive workloads

* Schedutil governor was designed to estimate the load based on the scheduler’s Per-Entity Load Tracking (PELT)
mechanism.

Scaling driver:

* Intel Core CPUs on Linux = Intel P-state driver
* AMD architecture - ACPI P-state driver
* Android systems = specialized frequency scaling driver called msm

Threat Model

e Offline Phase: Offline Phase Online Phase

v" Attacker monitors the dynamic CPU frequency in his B el Attacker Vi r—.

own system while rendering different websites. ﬁ . . g &
v" A multi-class classification model is trained with the walidous Apes :

collected frequency measurements. —_—

 Online Phase:

Malicious Apps

: Read CPU
- . ; Read CPU
v’ Attacker places a malicious code in a user-space HMX) erequency frgzuencylLinAu)g
application installed by the victim in his/her device —
H . STy 2 . erver . o
v" Monitor the current frequency in the victim’s Train Transmit ..
2 Model = data fas
system. “I ——{ WMM
v" Implement a cross-core side-channel attack through S ' S | ELL1I) MM
the current frequency readings
v' Attacker collects a single trace during the website Classify visited website
rendering i
v’ Forward to the attacker’s server in which the pre- Assumptions:
trained model is located Q Victim’s device is only running a particular browser
v' Finally, the model is queried in the attacker server to instead of many applications at a time
classify the visited website O System Configuration (Attacker and Victim) needs to be

matched.

Experimental Setup

Intel Comet Lake
 CPU Model: Intel(R) Core (TM) i7-10610U CPU
@1.80GHz
* Scaling Governors: powersave (default), performance
* Linux kernel version: 5.11.0-46-generic

Intel Tiger Lake:
 CPU Model: Intel(R) Core (TM) i7-1165G7 @ 2.80GHz
* Scaling Governors: powersave (default), performance
* Linux kernel version: 5.13.0-44-generic

AMD Ryzen 5:
e CPU Model: AMD Ryzen 5 5500U CPU with Radeon
Graphic

* Scaling Governors: ondemand (default), powersave,
performance, conservative, userspace, schedutil
* Linux kernel version: 5.13.0-44-generic

Attribute Micro-architecture

Intel Intel AMD ARM

Comet Lake | Tiger Lake | Ryzen 5 |Cortex- A73

base_freq 1.8 GHz 2.8 GHz 1.7 GHz N/A
max_freq 4.9 GHz 4.7 GHz 4.06 GHz 2.36 GHz
min_freq 0.4 GHz 0.4 GHz 1.4 GHz 0.8 GHz
scaling driv | intel_pstate | intel_pstate | acpi-cpufreq msm
scaling gov | powersave | powersave | ondemand | interactive
turbo boost v v v N/A

ARM Cortex-A73:
e CPU Model: Four ARM Cortex-A53 and Four
ARM Cortex-A73 cores
* Scaling Governors: interactive (default),
powersave, performance, ondemand,
conservative, userspace

Website Detection: Data Collection

Algorithm 1: Data Collection Algorithm for Each Website

// T; is the interval between each readings Selected parameters in the Algorithm:
// Ns is the number of samples QT;=10ms

// Np is the number of measurements per website U Google-chrome: N, = 1000

// url is the web-page address O Tor browser: Ny = 3000

// f is the CPU frequency d Ny =100

Input: T;, N, Nag, url

Output: f

1 fori « 1to Ny do

Run url in the browser ;
for j « 1 to N do

L fli,j] « Read scaling_cur_freq ; -y DReading CPU frequency:

sleep 7 ; /sys/devices/system/cpu/cpul /cpufreq/scaling_cur_freq
Close the browser ;

sleep 1s ;

Website Detection: Data Collection

. x10° . . . 4 x10° . ' _ . <10°
5 0 ﬁ”‘—*“'“"‘I n o
< 3} v 3f m < 3
Sost Sost Sost . ..
sl s, s, * Each website has a distinct pattern
S 15| I Sasf | “l S s as the contents of these websites
(@) O O
L LRI . L L Ll Jll I include different JS scripts, images,
0'50 260 460 660 860 1000 U'50 260 460 660 860 1000 0'50 260 4(')0 660 860 1000 HTML dOCU ments , and plug—in
Sample number Sample number Sample number .
(a) Facebook-1 (c) Reddit-1 (e) Twitter-1 (0] bj ects.
4 x10° . . ' 4 x10° . ' _ . x10°
35% 35 M 3501 1 .
g : 7l A 0T | * CPU workload generates a unique
25| T T s fingerprint on the frequency
g 2f g 2f g 2f readings for individual website.
T 151 2 15¢ F 15} I 1
O O o
d T L L Il
0.5 - : : : 0.5 : - - - 0.5 : : : :
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Sample number Sample number Sample number
(b) Facebook-2 (d) Reddit-2 (f) Twitter-2

A common pattern exists while visiting the same
websites for multiple measurements 10

Website Detection: Data Collection

cpufreq Resolution:

14<\ v LRI | ' L L | ' LA | ' LRI | v L LR
* Higher resolution enables attackers to 12(\ —6— Intel Comet Lake
capture a more detailed fingerprint i —<&— Intel Tiger Lake

* We observe that the number of repeated —4A— AMD Ryzen 5
values increases with the decreasing amount
of delay between each reading

* The optimal delay is 10 ms for Intel and AMD
architectures

* The speed of querying the cpufreq interface
on Android devices is different than Intel and

Repetitiveness

AMD architectures

e This value is defined by the 0 1072 107 10°
min_sample_time in the interactive Resolution (ms)
governor, which is set to 20 ms by default.

11

Website Detection: Performance Evaluation

Table 2: Test accuracy for different setups with their default scaling governor mode explored with four ML models

_ _ Test Accuracy
Micro-architecture Governor Browser CNN SVM KNN RE

Chrome 92.0% 74.6% 93.7%
Intel Comet Lake powersave Tor T3.7% >| 64.9% 33.6% 63.6%
Tor (Top 5 score) [93.0% >| 86.6% 54.0% 86.2%
Chrome 97.6% >| 95.8% 84.3% 93.0%
Intel Tiger Lake powersave Tor 68.7% >| 51.9% 16.2% 30.4%
Tor (Top 5 score) | 86.1% >| 78.7% 30.9% 55.0%
Chrome C93.1% > 90.4% 78.4% 84.9%
AMD Ryzen 5 ondemand Tor C60.3% >| 50.8% 24.7% 29.8%
Tor (Top 5 score) |C_87.0% >| 83.2% 46.5% 58.2%
ARM Cortex-A73 interactive Chrome @ 71.7% 38.6% 69.6%

12

Website Detection: Related Work

Table 3: Previous works based on different side-channel profiling techniques for website fingerprinting. For each work, attack
vector, resolution, targeted browser, classification accuracy, and number of websites profiled are given.

Work Attack Vector Resolution | Browser Accuracy (%) | # of Websites
DF-SCA Frequency scaling 10 ms Chrome/Tor 97.6 100

Rendered Insecure [32] | GPU memory API 60 s Chrome 90.4 200

PerfWeb [13] Performance counters | 40 us Chrome/Tor 86.4 30

RedAlert [53] Intel RAPL 1 ms Chrome 99 37
Shusterman et al. [43] | Last-level cache 2 ms Firefox/Chrome/Tor | 80 100

Spreitzer et al. [47] Data-usage 20 ms Tor 95 100

Zhang et al. [52] i0S APIs 1 ms Safari 68.5 100

Memento [18] procfs 10 s Chrome 78 100

Loophole [48] shared event loop 25 s Chrome 76.7 500

13

Keystroke Detection

* We assume that a phone user enters her password to log 106
into his account in a banking application 18 | | @ |
e Considered Banking Application: Bank of America (BoA) 16l P A s s 2w 0 R D 1

* Sampling rate: 20 ms

—
~
T

* The collected keystrokes have three common properties
v A single keystroke length changes between 8 and 12
samples
v The big cores’ frequency increases up to 1.6GHz

Frequency (KHz)
¥
[—
—
| —

—
T
1

v" If two consecutive keystrokes are close to each other, 0.8 ‘ ' ‘ '
the length of a keystroke pattern is higher than 12 0 50 100 150 200 250
Frequency Sample
samples.
e It takes 200 ms in average to decrease the frequency from O Our goal is not to outperform the existing works in the
peak to idle frequency level keystroke attack literature, but rather demonstrates
* Hence, an attacker is able to distinguish the keystrokes that DF-SCA attack has sufficient resolution and accuracy to

have at least 200 ms between each key press with DF-SCA. perform a password detection attack.

14

Keystroke Detection

Selected password: 50 out of 200 most used passwords on

web 100

Length of the password varies from 6 to 9 characters. '3/

80"

(1]
m
0

The phone user entered 50 distinct passwords for at least 10
60
times

Accuracy(%)

40 ‘
BDF-SCA
©Random

In total, 1252 password measurements were collected from

50 distinct passwords 20
—©

oY
~

1 1;5 2 2.5 3 3;5 4 4.5 5
The inter-keystroke timings are determined Number of Guesses

- Q

?

The achieved keystroke detection rate is 95%

10 measurements for each password are selected to _
L The model can guess the correct password with 88%

evaluate the password detection accuracy success rate with one guess

A Kth-nearest neighbor (KNN) model is trained with the L With only 3 guesses, the success rate is 97%

measurements. 15

Countermeasures

Restricting Access Privilege for cpufreq interface from userspace applications in Linux OS.
Decreasing the update interval of the cpufreqg interface
v" With lower resolution, the amount of information leaked by DF-SCA can be diminished significantly
Artificial noise can be introduced by the system to mask the rapid frequency changes in the system
v' Example: by randomly inserting workloads in the system
v’ Since side-channel analysis takes advantage of Deep Learning algorithms frequently, adversarial
obfuscation techniques can also be implemented to fool the Deep Learning models
Similarly, keystroke attacks can be eliminated by introducing additional keystrokes to make the

distribution more uniform

Impact of Different Scaling Governors

* Intel Tiger Lake:
» Accuracy improves slightly when the scaling

) Table 4: The impacts of different scaling governors on web-
governor is changed to performance from

site fingerprinting accuracy for Intel Tiger Lake and AMD

powersave Ryzen 5 architectures
Scaling governor Test Accuracy (%)
88 Intel Tiger Lake | AMD Ryzen 5

« AMD Ryzen 5: performance 97.8 68.1
> The default scaling governor ondemand powersave 97.6 75.3
gives the highest website classification USEIspace N/A 80.1
accuracy. ondemand N/A 97.6

> The performance and powersave governors mnsewat_j""e N/A 96.7
drop the classification. schedutil N/A 97.6

17

Impact of Different Scaling Governors

Unlike other scaling governors, for userspace

governor the CPU keeps the core frequency

below it’s base frequency.

Although the variation is quite low, a similar
pattern for the same web page can still be

noticeable from this figure.

CPU frequency

CPU frequency

1.4
1.399
1.398 1
1307} | '
1.396 1
1.395
1.394 k ; A k
0 200 400 600 800 1000
Sample number
(a) Facebook-1
1.4
1.399
1.398 1
T v .,*1#1—" wmwm,ﬂm s
1.397
1.396 1
1.3951
1.394 : : : .
0 200 400 600 800 1000

Sample number
(b) Facebook-2

1.405

CPU frequency (GHz)

1.385
0

1.405

CPU frequency (GHz)

1.385
0

-
»
T

13951

1391

i
]
§

200 400 600
Sample number
(c) Instagram-1

800 1000

—_
H
T

13951

1.39}

200 400 600
Sample number
(d) Instagram-2

800 1000

18

Universal ML Model for different microarchitectures

* Previously, we trained separate ML models for Intel, Table 5: The universal ML Model training and evaluation for

AMD, and ARM architectures to obtain the highest Intel Tiger Lake, Intel Comet Lake, and AMD Ryzen 5 archi-
website fingerprinting accuracy. tectures

* We are interested to know whether it is possible to Micro-architecture Test Accuracy (%)
replace the individual ML models with a universal ML Intel Comet Lake + Intel Tiger Lake 95.9
model Intel Comet Lake + Intel Tiger Lake + AMD Ryzen 5 92.3

* This will facilitate the attacker to perform website
fingerprinting without requiring to know the exact

targeted microarchitecture.
 Combined the CPU frequency traces of the Intel

microarchitectures to train one CNN model and achieved

test accuracy of 95.9%
e Later, combined both Intel and AMD frequency traces,
which leads to 92.3% accuracy with one CNN model

19

Outcomes

The attacker only needs to collect 10 seconds of the frequency values to detect the websites in Google Chrome browser
applicable to Intel, AMD, and ARM devices.

* Even though DF-SCA’s resolution is significantly lower than many previous attacks, it is still possible to detect the visited
websites with a high accuracy.

* Moreover, victim keystrokes can be detected with 95% success rate which yields to a successful password recovery
attack with a simple ML classification.

* Asaresult, DF-SCA is a potential threat for all the components that take advantage of DVFS technology.

* The access privilege restriction or artificial noise injection might become fruitful countermeasures against such
a threat.

(] The dataset and the code are made available in GitHub:
https://github.com/Diptakuet/DF-SCA-Dynamic-Frequency-Side-Channel-
Attacks-are-Practical.git

https://github.com/Diptakuet/DF-SCA-Dynamic-Frequency-Side-Channel-Attacks-are-Practical.git

THANK YOU

? QUESTIONS?

