DF-SCA: Dynamic Frequency Side Channel Attacks are Practical

Debopriya Roy Dipta and Berk Gulmezoglu
roydipta@iastate.edu bgulmez@iastate.edu

IOWA STATE UNIVERSITY, IA, USA
What is Side Channel Attack?

• Side-channel attacks use unintentional information leakage from secure chips to compromise their security.

• Compromising security:
 ✓ Cryptographic key recovery
 ✓ Website fingerprinting
 ✓ Keystroke detection

• These unintentional information can be of different types:
 ✓ Timing information
 ✓ Power dissipation
 ✓ Electromagnetic fields
 ✓ Micro-architectural information

Micro-architectural side-channel attacks refer to a side-channel attack that exploit information leakage from the hardware infrastructure itself.
DF-SCA: Dynamic Frequency Side Channel

- Software-based dynamic frequency side-channel attack
- Applicable on Linux and Android OS devices
- Exploit unprivileged access to \textit{cpufreq} interface

CHALLENGE!

- Noisy measurements
- Low resolution

- Exploited in the context of covert channels and cryptographic attacks
- However, it has not been investigated to infer user activity, e.g.,
 - Website fingerprinting
 - Keystroke detection

- Still dynamic frequency readings through Linux \textit{cpufreq} interface provide sufficiently-detailed information on the user activity on Intel, AMD, and ARM architectures.
Dynamic Voltage and Frequency Scaling (DVFS)

- Allow switching between different frequency/voltage configurations based on the dynamic CPU resource demand.
- The rapid frequency changes are adjusted through different algorithms depending on the target application

CPUFreq Subsystem:

- Responsible for the performance scaling of the CPU in a Linux kernel-based operating system
- Comprises of three layers of code:
 - **Core:** Defines the layout of basic framework
 - **Scaling governor:** Defines different frequency scaling algorithms to predict the CPU latency
 - **Scaling driver:** Access a specific hardware interface to change the P-state based on the request set forth by the scaling governors
Dynamic Voltage and Frequency Scaling (DVFS)

PolicyX Interface:

- **CPUFreq** core generates a sysfs directory named `cpufreq`, under `/sys/devices/system/cpu` path
- Within this directory a policyX sub-directory exists for all of the CPUs associated with the given policy
- policyX directories include policy-specific files to control **CPUFreq** behavior based on the corresponding policy objects.
- **CPUFreq** core generates several attributes dependent on the scaling governors and drivers, such as:
 - `scaling_cur_freq`
 - `scaling_min_freq`
 - `scaling_max_freq`
 - `scaling_available_governors`
 - `scaling_governor`
 - `scaling_driver`
Dynamic Voltage and Frequency Scaling (DVFS)

Scaling governor:
- **Performance** governor keeps the CPU around the highest frequency, within the `scaling_max_freq` policy limit.
- **Powersave** governor keeps the core frequency low when there is no workload still within the `scaling_min_freq` policy limit.
- **Userspace** governor allows userspace application to set the CPU frequency for the associated policy.
- **Ondemand** governor uses CPU load to determine the CPU frequency selection metric.
- **Conservative** governor sets the CPU frequency selection metric based on the CPU load.
- **Interactive** governor is designed for latency-sensitive, interactive workloads.
- **Schedutil** governor was designed to estimate the load based on the scheduler’s Per-Entity Load Tracking (PELT) mechanism.

Scaling driver:
- Intel Core CPUs on Linux → Intel P-state driver
- AMD architecture → ACPI P-state driver
- Android systems → specialized frequency scaling driver called `msm`
Threat Model

• **Offline Phase:**
 ✓ Attacker monitors the dynamic CPU frequency in his own system while rendering different websites.
 ✓ A multi-class classification model is trained with the collected frequency measurements.

• **Online Phase:**
 ✓ Attacker places a malicious code in a user-space application installed by the victim in his/her device
 ✓ Monitor the current frequency in the victim’s system.
 ✓ Implement a cross-core side-channel attack through the current frequency readings
 ✓ Attacker collects a single trace during the website rendering
 ✓ Forward to the attacker’s server in which the pre-trained model is located
 ✓ Finally, the model is queried in the attacker server to classify the visited website

Assumptions:
- Victim’s device is only running a particular browser instead of many applications at a time
- System Configuration (Attacker and Victim) needs to be matched.
Experimental Setup

Intel Comet Lake
- CPU Model: Intel(R) Core (TM) i7-10610U CPU @1.80GHz
- Scaling Governors: powersave (default), performance
- Linux kernel version: 5.11.0-46-generic

Intel Tiger Lake:
- CPU Model: Intel(R) Core (TM) i7-1165G7 @ 2.80GHz
- Scaling Governors: powersave (default), performance
- Linux kernel version: 5.13.0-44-generic

AMD Ryzen 5:
- CPU Model: AMD Ryzen 5 5500U CPU with Radeon Graphic
- Scaling Governors: ondemand (default), powersave, performance, conservative, userspace, schedutil
- Linux kernel version: 5.13.0-44-generic

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Intel Comet Lake</th>
<th>Intel Tiger Lake</th>
<th>AMD Ryzen 5</th>
<th>ARM Cortex-A73</th>
</tr>
</thead>
<tbody>
<tr>
<td>base_freq</td>
<td>1.8 GHz</td>
<td>2.8 GHz</td>
<td>1.7 GHz</td>
<td>N/A</td>
</tr>
<tr>
<td>max_freq</td>
<td>4.9 GHz</td>
<td>4.7 GHz</td>
<td>4.06 GHz</td>
<td>2.36 GHz</td>
</tr>
<tr>
<td>min_freq</td>
<td>0.4 GHz</td>
<td>0.4 GHz</td>
<td>1.4 GHz</td>
<td>0.8 GHz</td>
</tr>
<tr>
<td>scaling_driv</td>
<td>intel_pstate</td>
<td>intel_pstate</td>
<td>acpi-cpufreq</td>
<td>msm</td>
</tr>
<tr>
<td>scaling_gov</td>
<td>powersave</td>
<td>powersave</td>
<td>ondemand</td>
<td>interactive</td>
</tr>
<tr>
<td>turbo_boost</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>N/A</td>
</tr>
</tbody>
</table>

ARM Cortex-A73:
- CPU Model: Four ARM Cortex-A53 and Four ARM Cortex-A73 cores
- Scaling Governors: interactive (default), powersave, performance, ondemand, conservative, userspace
Algorithm 1: Data Collection Algorithm for Each Website

// T_i is the interval between each readings
// N_s is the number of samples
// N_M is the number of measurements per website
// url is the web-page address
// f is the CPU frequency

Input: T_i, N_s, N_M, url

Output: f

1. for $i \leftarrow 1$ to N_M do
2. Run url in the browser;
3. for $j \leftarrow 1$ to N_s do
4. $f[i, j] \leftarrow$ Read `scaling_cur_freq`;
5. sleep T_i;
6. Close the browser;
7. sleep 1s;

Selected parameters in the Algorithm:
- $T_i = 10 \text{ ms}$
- Google-chrome: $N_s = 1000$
- Tor browser: $N_s = 3000$
- $N_M = 100$

Reading CPU frequency:
/sys/devices/system/cpu/cpu1/cpufreq/scaling_cur_freq
Website Detection: Data Collection

- Each website has a distinct pattern as the contents of these websites include different JS scripts, images, HTML documents, and plug-in objects.

- CPU workload generates a unique fingerprint on the frequency readings for individual website.

A common pattern exists while visiting the same websites for multiple measurements.
cpufreq Resolution:

- Higher resolution enables attackers to capture a more detailed fingerprint.
- We observe that the number of repeated values increases with the decreasing amount of delay between each reading.
- The optimal delay is **10 ms** for Intel and AMD architectures.
- The speed of querying the `cpufreq` interface on Android devices is different than Intel and AMD architectures.
- This value is defined by the `min_sample_time` in the `interactive` governor, which is set to **20 ms** by default.
Table 2: Test accuracy for different setups with their default scaling governor mode explored with four ML models

<table>
<thead>
<tr>
<th>Micro-architecture</th>
<th>Governor</th>
<th>Browser</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CNN</td>
<td>SVM</td>
</tr>
<tr>
<td>Intel Comet Lake</td>
<td>powersave</td>
<td>Chrome</td>
<td>94.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor</td>
<td>73.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor (Top 5 score)</td>
<td>93.0%</td>
</tr>
<tr>
<td>Intel Tiger Lake</td>
<td>powersave</td>
<td>Chrome</td>
<td>97.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor</td>
<td>68.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor (Top 5 score)</td>
<td>86.1%</td>
</tr>
<tr>
<td>AMD Ryzen 5</td>
<td>ondemand</td>
<td>Chrome</td>
<td>93.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor</td>
<td>60.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tor (Top 5 score)</td>
<td>87.0%</td>
</tr>
<tr>
<td>ARM Cortex-A73</td>
<td>interactive</td>
<td>Chrome</td>
<td>87.3%</td>
</tr>
</tbody>
</table>
Website Detection: Related Work

Table 3: Previous works based on different side-channel profiling techniques for website fingerprinting. For each work, attack vector, resolution, targeted browser, classification accuracy, and number of websites profiled are given.

<table>
<thead>
<tr>
<th>Work</th>
<th>Attack Vector</th>
<th>Resolution</th>
<th>Browser</th>
<th>Accuracy (%)</th>
<th># of Websites</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF-SCA</td>
<td>Frequency scaling</td>
<td>10 ms</td>
<td>Chrome/Tor</td>
<td>97.6</td>
<td>100</td>
</tr>
<tr>
<td>Rendered Insecure [32]</td>
<td>GPU memory API</td>
<td>60 µs</td>
<td>Chrome</td>
<td>90.4</td>
<td>200</td>
</tr>
<tr>
<td>PerfWeb [13]</td>
<td>Performance counters</td>
<td>40 µs</td>
<td>Chrome/Tor</td>
<td>86.4</td>
<td>30</td>
</tr>
<tr>
<td>RedAlert [53]</td>
<td>Intel RAPL</td>
<td>1 ms</td>
<td>Chrome</td>
<td>99</td>
<td>37</td>
</tr>
<tr>
<td>Shusterman et al. [43]</td>
<td>Last-level cache</td>
<td>2 ms</td>
<td>Firefox/Chrome/Tor</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Spreitzer et al. [47]</td>
<td>Data-usage</td>
<td>20 ms</td>
<td>Tor</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Zhang et al. [52]</td>
<td>iOS APIs</td>
<td>1 ms</td>
<td>Safari</td>
<td>68.5</td>
<td>100</td>
</tr>
<tr>
<td>Memento [18]</td>
<td>procfs</td>
<td>10 µs</td>
<td>Chrome</td>
<td>78</td>
<td>100</td>
</tr>
<tr>
<td>Loophole [48]</td>
<td>shared event loop</td>
<td>25 µs</td>
<td>Chrome</td>
<td>76.7</td>
<td>500</td>
</tr>
</tbody>
</table>
Keystroke Detection

- We assume that a phone user enters her password to log into his account in a banking application
- Considered Banking Application: Bank of America (BoA)
- Sampling rate: **20 ms**

- The collected keystrokes have three common properties
 - A single keystroke length changes between 8 and 12 samples
 - The big cores’ frequency increases up to 1.6GHz
 - If two consecutive keystrokes are close to each other, the length of a keystroke pattern is higher than 12 samples.

- It takes 200 ms in average to decrease the frequency from peak to idle frequency level
- Hence, an attacker is able to distinguish the keystrokes that have at least 200 ms between each key press with DF-SCA.

- Our goal is not to outperform the existing works in the keystroke attack literature, but rather demonstrates DF-SCA attack has sufficient resolution and accuracy to perform a password detection attack.
Keystroke Detection

- Selected password: **50 out of 200** most used passwords on web
- Length of the password varies from **6 to 9 characters**.
- The phone user entered **50** distinct passwords for at least **10** times
- In total, **1252 password measurements** were collected from **50 distinct passwords**
- The achieved keystroke detection rate is **95%**
- The inter-keystroke timings are determined
- **10 measurements** for each password are selected to evaluate the password detection accuracy
- A Kth-nearest neighbor (KNN) model is trained with the measurements.

- The model can guess the correct password with **88%** success rate with one guess
- With only **3 guesses**, the success rate is **97%**
Countermeasures

- **Restricting Access Privilege** for `cpufreq` interface from userspace applications in Linux OS.
- **Decreasing the update interval** of the `cpufreq` interface
 - ✓ With lower resolution, the amount of information leaked by DF-SCA can be diminished significantly
- **Artificial noise** can be introduced by the system to mask the rapid frequency changes in the system
 - ✓ Example: by randomly inserting workloads in the system
 - ✓ Since side-channel analysis takes advantage of Deep Learning algorithms frequently, adversarial obfuscation techniques can also be implemented to fool the Deep Learning models
- Similarly, keystroke attacks can be eliminated by introducing additional keystrokes to make the distribution more uniform
Impact of Different Scaling Governors

• Intel Tiger Lake:
 ➢ Accuracy improves slightly when the scaling governor is changed to *performance* from *powersave*

• AMD Ryzen 5:
 ➢ The default scaling governor *ondemand* gives the highest website classification accuracy.
 ➢ The *performance* and *powersave* governors drop the classification.

Table 4: The impacts of different scaling governors on website fingerprinting accuracy for Intel Tiger Lake and AMD Ryzen 5 architectures

<table>
<thead>
<tr>
<th>Scaling governor</th>
<th>Intel Tiger Lake</th>
<th>AMD Ryzen 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance</td>
<td>97.8</td>
<td>68.1</td>
</tr>
<tr>
<td>powersave</td>
<td>97.6</td>
<td>75.3</td>
</tr>
<tr>
<td>userspace</td>
<td>N/A</td>
<td>80.1</td>
</tr>
<tr>
<td>ondemand</td>
<td>N/A</td>
<td>97.6</td>
</tr>
<tr>
<td>conservative</td>
<td>N/A</td>
<td>96.7</td>
</tr>
<tr>
<td>schedutil</td>
<td>N/A</td>
<td>97.6</td>
</tr>
</tbody>
</table>
Impact of Different Scaling Governors

- Unlike other scaling governors, for *userspace* governor the CPU keeps the core frequency below it’s base frequency.

- Although the variation is quite low, a similar pattern for the same web page can still be noticeable from this figure.
Universal ML Model for different microarchitectures

• Previously, we trained separate ML models for Intel, AMD, and ARM architectures to obtain the highest website fingerprinting accuracy.

• We are interested to know whether it is possible to replace the individual ML models with a universal ML model.

• This will facilitate the attacker to perform website fingerprinting without requiring to know the exact targeted microarchitecture.

Table 5: The universal ML Model training and evaluation for Intel Tiger Lake, Intel Comet Lake, and AMD Ryzen 5 architectures

<table>
<thead>
<tr>
<th>Micro-architecture</th>
<th>Test Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Comet Lake + Intel Tiger Lake</td>
<td>95.9</td>
</tr>
<tr>
<td>Intel Comet Lake + Intel Tiger Lake + AMD Ryzen 5</td>
<td>92.3</td>
</tr>
</tbody>
</table>

• Combined the CPU frequency traces of the Intel microarchitectures to train one CNN model and achieved test accuracy of 95.9%
• Later, combined both Intel and AMD frequency traces, which leads to 92.3% accuracy with one CNN model.
Outcomes

- The attacker only needs to collect 10 seconds of the frequency values to detect the websites in Google Chrome browser applicable to Intel, AMD, and ARM devices.

- Even though DF-SCA’s resolution is significantly lower than many previous attacks, it is still possible to detect the visited websites with a high accuracy.

- Moreover, victim keystrokes can be detected with 95% success rate which yields to a successful password recovery attack with a simple ML classification.

- As a result, DF-SCA is a potential threat for all the components that take advantage of DVFS technology.

- The access privilege restriction or artificial noise injection might become fruitful countermeasures against such a threat.

The dataset and the code are made available in GitHub:
THANK YOU

QUESTIONS?