

DF-SCA: Dynamic Frequency Side Channel Attacks are Practical

Debopriya Roy Dipta and Berk Gulmezoglu

roydipta@iastate.edu

bgulmez@iastate.edu

What is Side Channel Attack?

- Side-channel attacks use <u>unintentional information leakage</u> from secure chips to <u>compromise their security</u>
- Compromising security:
 - ✓ Cryptographic key recovery
 - ✓ Website fingerprinting
 - ✓ Keystroke detection
- These <u>unintentional information</u> can be of different types:
 - \checkmark Timing information
 - ✓ Power dissipation
 - ✓ Electromagnetic fields
 - ✓ Micro-architectural information

Ref: Gamaarachchi, H. and Ganegoda, H., 2018. Power analysis-based side channel attack. *arXiv preprint arXiv:1801.00932*.

Micro-architectural side-channel attacks refer to a sidechannel attack that exploit information leakage from the hardware infrastructure itself

DF-SCA: Dynamic Frequency Side Channel

- Software-based dynamic frequency side-channel attack
- Applicable on Linux and Android OS devices
- Exploit unprivileged access to *cpufreq* interface

CHALLENGE

✓ Noisy measurements✓ Low resolution

- Exploited in the context of covert channels and cryptographic attacks
- However, it has not been investigated to infer user <u>activity</u>, e.g.,
 - Website fingerprinting
 - Keystroke detection
 - Still dynamic frequency readings through Linux cpufreq interface provide sufficiently-detailed information on the user activity on Intel, AMD, and ARM architectures.

Dynamic Voltage and Frequency Scaling (DVFS)

- Allow switching between different frequency/voltage configurations based on the dynamic CPU resource demand.
- The rapid frequency changes are adjusted through different algorithms depending on the target application

CPUFreq Subsystem:

- Responsible for the performance scaling of the CPU in a Linux kernel-based operating system
- Comprises of three layers of code:
 - ✓ **Core:** Defines the layout of basic framework
 - ✓ Scaling governor: Defines different frequency scaling algorithms to predict the CPU latency
 - Scaling driver: Access a specific hardware interface to change the P-state based on the request set forth by the scaling governors

Dynamic Voltage and Frequency Scaling (DVFS)

PolicyX Interface:

- CPUFreq core generates a sysfs directory named cpufreq, under /sys/devices/system/cpu path
- Within this directory a policyX sub-directory exists for all of the CPUs associated with the given policy
- policyX directories include policy-specific files to control *CPUFreq* behavior based on the corresponding policy objects.
- CPUFreq core generates several attributes dependent on the scaling governors and drivers, such as:

✓ scaling_cur_freq

✓ scaling_min_freq

✓ scaling_max_freq

✓ scaling_available_governors

✓ scaling_governor

✓ scaling_driver

Dynamic Voltage and Frequency Scaling (DVFS)

Scaling governor:

- *Performance* governor keeps the CPU around the highest frequency, within the *scaling_max_freq* policy limit
- Powersave governor keeps the core frequency low when there is no workload still within the scaling_min_freq policy limit.
- Userspace governor allows userspace application to set the CPU frequency for the associated policy
- **Ondemand** governor uses CPU load to determine the CPU frequency selection metric
- *Conservative* governor sets the CPU frequency selection metric based on the CPU load.
- Interactive governor is designed for latency-sensitive, interactive workloads
- Schedutil governor was designed to estimate the load based on the scheduler's Per-Entity Load Tracking (PELT) mechanism.

Scaling driver:

- Intel Core CPUs on Linux → Intel P-state driver
- AMD architecture → ACPI P-state driver
- Android systems \rightarrow specialized frequency scaling driver called *msm*

Threat Model

• Offline Phase:

- ✓ Attacker monitors the dynamic CPU frequency in his own system while rendering different websites.
- ✓ A multi-class classification model is trained with the collected frequency measurements.

• Online Phase:

- ✓ Attacker places a malicious code in a user-space application installed by the victim in his/her device
- Monitor the current frequency in the victim's system.
- ✓ Implement a cross-core side-channel attack through the current frequency readings
- ✓ Attacker collects a single trace during the website rendering
- ✓ Forward to the attacker's server in which the pretrained model is located
- ✓ Finally, the model is queried in the attacker server to classify the visited website

Assumptions:

- Victim's device is only running a particular browser instead of many applications at a time
- System Configuration (Attacker and Victim) needs to be matched.

Experimental Setup

Intel Comet Lake

- CPU Model: Intel(R) Core (TM) i7-10610U CPU @1.80GHz
- Scaling Governors: powersave (default), performance
- Linux kernel version: 5.11.0-46-generic

Intel Tiger Lake:

- CPU Model: Intel(R) Core (TM) i7-1165G7 @ 2.80GHz
- Scaling Governors: powersave (default), performance
- Linux kernel version: 5.13.0-44-generic

AMD Ryzen 5:

- CPU Model: AMD Ryzen 5 5500U CPU with Radeon Graphic
- Scaling Governors: ondemand (default), powersave, performance, conservative, userspace, schedutil
- Linux kernel version: 5.13.0-44-generic

Attribute	Micro-architecture						
Attribute	Intel	Intel	AMD	ARM			
	Comet Lake	Tiger Lake	Ryzen 5	Cortex- A73			
base_freq	1.8 GHz	2.8 GHz	1.7 GHz	N/A			
freq	4.9 GHz	4.7 GHz	4.06 GHz	2.36 GHz			
min_freq	0.4 GHz	0.4 GHz	1.4 GHz	0.8 GHz			
scaling_driv	intel_pstate	intel_pstate	acpi-cpufreq	msm			
scaling_gov	powersave	powersave	ondemand	interactive			
turbo_boost	\checkmark	\checkmark	\checkmark	N/A			

ARM Cortex-A73:

- CPU Model: Four ARM Cortex-A53 and Four ARM Cortex-A73 cores
- Scaling Governors: interactive (default), powersave, performance, ondemand, conservative, userspace

Website Detection: Data Collection

Algorithm 1: Data Collection Algorithm for Each Website $// T_i$ is the interval between each readings Selected parameters in the Algorithm: $\Box T_i = 10 ms$ $// N_s$ is the number of samples **Google-chrome:** $N_s = 1000$ $// N_M$ is the number of measurements per website \Box Tor browser: $N_s = 3000$ // *url* is the web-page address $\square N_M = 100$ // f is the CPU frequency Input: T_i, N_s, N_M, url **Output:** *f* 1 for $i \leftarrow 1$ to N_M do Run *url* in the browser ; 2 **for** $j \leftarrow 1$ to N_s **do** 3 $f[i, j] \leftarrow \text{Read } scaling_cur_freq ; \implies \Box \text{Reading } CPU \text{ frequency:}$ 4 sleep T_i ; 5 /sys/devices/system/cpu/cpu1/cpufreq/scaling_cur_freq Close the browser ; 6 sleep 1s; 7

Website Detection: Data Collection

- Each website has a distinct pattern as the contents of these websites include different JS scripts, images, HTML documents, and plug-in objects.
- CPU workload generates a unique fingerprint on the frequency readings for individual website.

A common pattern exists while visiting the same websites for multiple measurements

Website Detection: Data Collection

cpufreq Resolution:

- Higher resolution enables attackers to capture a more detailed fingerprint
- We observe that the number of repeated values increases with the decreasing amount of delay between each reading
- The optimal delay is 10 ms for Intel and AMD architectures
- The speed of querying the *cpufreq* interface on Android devices is different than Intel and AMD architectures
- This value is defined by the min_sample_time in the interactive governor, which is set to 20 ms by default.

Website Detection: Performance Evaluation

Table 2: Test accuracy for different setups with their default scaling governor mode explored with four ML models

Micro-prohitecture	Governor	Browser	Test Accuracy				
where-architecture			CNN	SVM	KNN	RF	
Intel Comet Lake	powersave	Chrome	94.5%	92.0%	74.6%	93.7%	
		Tor	73.7%	64.9%	33.6%	63.6%	
		Tor (Top 5 score)	93.0%	86.6%	54.0%	86.2%	
Intel Tiger Lake	powersave	Chrome	97.6%	95.8%	84.3%	93.0%	
		Tor	68.7%	51.9%	16.2%	30.4%	
		Tor (Top 5 score)	86.1%	78.7%	30.9%	55.0%	
AMD Ryzen 5	ondemand	Chrome	93.1%	90.4%	78.4%	84.9%	
		Tor	60.3%	50.8%	24.7%	29.8%	
		Tor (Top 5 score)	87.0%	83.2%	46.5%	58.2%	
ARM Cortex-A73	interactive	Chrome	87.3%	71.7%	38.6%	69.6%	

Website Detection: Related Work

Table 3: Previous works based on different side-channel profiling techniques for website fingerprinting. For each work, attack vector, resolution, targeted browser, classification accuracy, and number of websites profiled are given.

Work	Attack Vector	Resolution	Browser	Accuracy (%)	# of Websites	
DF-SCA	Frequency scaling	10 ms	Chrome/Tor	97.6	100	
Rendered Insecure [32]	GPU memory API	60 µs	Chrome	90.4	200	
PerfWeb [13]	Performance counters	40 µs	Chrome/Tor	86.4	30	
RedAlert [53]	Intel RAPL	1 ms	Chrome	99	37	
Shusterman et al. [43]	Last-level cache	2 ms	Firefox/Chrome/Tor	80	100	
Spreitzer et al. [47]	Data-usage	20 ms	Tor	95	100	
Zhang et al. [52]	iOS APIs	1 ms	Safari	68.5	100	
Memento [18]	procfs	10 µs	Chrome	78	100	
Loophole [48]	shared event loop	25 µs	Chrome	76.7	500	
	Work DF-SCA Rendered Insecure [32] PerfWeb [13] RedAlert [53] Shusterman et al. [43] Spreitzer et al. [47] Zhang et al. [52] Memento [18] Loophole [48]	WorkAttack VectorDF-SCAFrequency scalingRendered Insecure [32]GPU memory APIPerfWeb [13]Performance countersRedAlert [53]Intel RAPLShusterman et al. [43]Last-level cacheSpreitzer et al. [47]Data-usageZhang et al. [52]iOS APIsMemento [18]procfsLoophole [48]shared event loop	WorkAttack VectorResolutionDF-SCAFrequency scaling10 msRendered Insecure [32]GPU memory API $60 \ \mu s$ PerfWeb [13]Performance counters $40 \ \mu s$ RedAlert [53]Intel RAPL1 msShusterman et al. [43]Last-level cache2 msSpreitzer et al. [47]Data-usage20 msZhang et al. [52]iOS APIs1 msMemento [18]procfs10 \ \mu sLoophole [48]shared event loop25 \ \mu s	WorkAttack VectorResolutionBrowserDF-SCAFrequency scaling10 msChrome/TorRendered Insecure [32]GPU memory API $60 \ \mu s$ ChromePerfWeb [13]Performance counters $40 \ \mu s$ Chrome/TorRedAlert [53]Intel RAPL1 msChromeShusterman et al. [43]Last-level cache2 msFirefox/Chrome/TorSpreitzer et al. [47]Data-usage20 msTorZhang et al. [52]iOS APIs1 msSafariMemento [18]procfs $10 \ \mu s$ ChromeLoophole [48]shared event loop $25 \ \mu s$ Chrome	WorkAttack VectorResolutionBrowserAccuracy (%)DF-SCAFrequency scaling10 msChrome/Tor97.6Rendered Insecure [32]GPU memory API $60 \ \mu$ sChrome90.4PerfWeb [13]Performance counters $40 \ \mu$ sChrome/Tor86.4RedAlert [53]Intel RAPL1 msChrome99Shusterman et al. [43]Last-level cache2 msFirefox/Chrome/Tor80Spreitzer et al. [47]Data-usage20 msTor95Zhang et al. [52]iOS APIs1 msSafari68.5Memento [18]procfs $10 \ \mu$ sChrome78Loophole [48]shared event loop $25 \ \mu$ sChrome76.7	WorkAttack VectorResolutionBrowserAccuracy (%)# of WebsitesDF-SCAFrequency scaling10 msChrome/Tor97.6100Rendered Insecure [32]GPU memory API $60 \ \mu s$ Chrome/Tor90.4200PerfWeb [13]Performance counters $40 \ \mu s$ Chrome/Tor86.430RedAlert [53]Intel RAPL1 msChrome/Tor9937Shusterman et al. [43]Last-level cache2 msFirefox/Chrome/Tor80100Spreitzer et al. [47]Data-usage20 msTor95100Zhang et al. [52]iOS APIs1 msSafari68.5100Memento [18]procfs10 \ μs Chrome78100Loophole [48]shared event loop25 \ μs Chrome76.7500

Keystroke Detection

- We assume that a phone user enters her password to log into his account in a banking application
- Considered Banking Application: Bank of America (BoA)
- Sampling rate: 20 ms
- The collected keystrokes have three common properties
 - ✓ A single keystroke length changes between 8 and 12 samples
 - ✓ The big cores' frequency increases up to 1.6GHz
 - ✓ If two consecutive keystrokes are close to each other, the length of a keystroke pattern is higher than 12 samples.
- It takes 200 ms in average to decrease the frequency from peak to idle frequency level
- Hence, an attacker is able to distinguish the keystrokes that have at least 200 ms between each key press with DF-SCA.

 Our goal is not to outperform the existing works in the keystroke attack literature, but rather demonstrates
 DF-SCA attack has sufficient resolution and accuracy to perform a password detection attack.

Keystroke Detection

- Selected password: 50 out of 200 most used passwords on web
- Length of the password varies from 6 to 9 characters.
- The phone user entered **50** distinct passwords for at least **10** times
- In total, 1252 password measurements were collected from
 50 distinct passwords
- The achieved keystroke detection rate is **95%**
- The inter-keystroke timings are determined
- **10 measurements** for each password are selected to evaluate the password detection accuracy
- A <u>Kth-nearest neighbor (KNN) model</u> is trained with the measurements.

- □ The model can guess the correct password with 88% success rate with one guess
- □ With only **3 guesse**s, the success rate is **97%**

- Restricting Access Privilege for cpufreq interface from userspace applications in Linux OS.
- **Decreasing the update interval** of the *cpufreq* interface
 - ✓ With lower resolution, the amount of information leaked by DF-SCA can be diminished significantly
- Artificial noise can be introduced by the system to mask the rapid frequency changes in the system
 - ✓ Example: by randomly inserting workloads in the system
 - Since side-channel analysis takes advantage of Deep Learning algorithms frequently, adversarial obfuscation techniques can also be implemented to fool the Deep Learning models
- Similarly, keystroke attacks can be eliminated by **introducing additional keystrokes** to make the distribution more uniform

Impact of Different Scaling Governors

• Intel Tiger Lake:

Accuracy improves slightly when the scaling governor is <u>changed to *performance* from</u> <u>powersave</u>

Table 4: The impacts of different scaling governors on website fingerprinting accuracy for Intel Tiger Lake and AMD Ryzen 5 architectures

Scaling governor	Test Accuracy (%)							
Scalling governor	Intel Tiger Lake			AMD Ryzen 5				
performance		97.8			68.1			
powersave		97.6		75.3				
userspace	N/A		80.1					
ondemand		N/A	4		97.6			
conservative	N/A		96.7					
schedutil	N/A			97.6				

• AMD Ryzen 5:

- The default scaling governor <u>ondemand</u> gives the highest website classification accuracy.
- The <u>performance</u> and <u>powersave</u> governors drop the classification.

Impact of Different Scaling Governors

- Unlike other scaling governors, for *userspace* governor the CPU <u>keeps the core frequency</u> <u>below it's base frequency</u>.
- Although the variation is quite low, a similar pattern for the same web page can still be noticeable from this figure.

Universal ML Model for different microarchitectures

- Previously, we trained separate ML models for Intel, AMD, and ARM architectures to obtain the highest website fingerprinting accuracy.
- We are interested to know whether it is possible to replace the individual ML models with a universal ML model.
- This will facilitate the attacker to perform website fingerprinting without requiring to know the exact targeted microarchitecture.

Table 5: The universal ML Model training and evaluation for Intel Tiger Lake, Intel Comet Lake, and AMD Ryzen 5 architectures

Micro-architecture	Test Accuracy (%			
Intel Comet Lake + Intel Tiger Lake		95.9		
Intel Comet Lake + Intel Tiger Lake + AMD Ryzen 5		92.3		

- Combined the CPU frequency traces of the Intel microarchitectures to train one CNN model and achieved test accuracy of 95.9%
- Later, combined both Intel and AMD frequency traces, which leads to **92.3%** accuracy with one CNN model

Outcomes

- The attacker only needs to collect 10 seconds of the frequency values to detect the websites in Google Chrome browser applicable to Intel, AMD, and ARM devices.
- Even though DF-SCA's resolution is significantly lower than many previous attacks, it is still possible to detect the visited websites with a high accuracy.
- Moreover, victim keystrokes can be detected with 95% success rate which yields to a successful password recovery attack with a simple ML classification.
- As a result, DF-SCA is a potential threat for all the components that take advantage of DVFS technology.
- The access privilege restriction or artificial noise injection might become fruitful countermeasures against such a threat.

The dataset and the code are made available in GitHub: <u>https://github.com/Diptakuet/DF-SCA-Dynamic-Frequency-Side-Channel-Attacks-are-Practical.git</u>

THANK YOU

QUESTIONS?