Trebiz: Byzantine Fault Tolerance with Byzantine Merchants

Xiaohai Dai*, Liping Huang*, Jiang Xiao*, Zhaonan Zhang*, Xia Xie+, and Hai Jin*

*National Engineering Research Center for Big Data Technology and System
*Services Computing Technology and System Lab, Cluster and Grid Computing Lab
*School of Computer Science and Technology, Huazhong University of Science and Technology, China
+School of Computer Science and Technology, Hainan University, China
Trebiz: Byzantine Fault Tolerance with Byzantine Merchants

The 38th Annual Computer Security Applications Conference (ACSAC 2022)
• **Consensus**
 - All correct replicas can reach an agreement on requests even there are some faulty replicas

![Distributed System Diagram]

- Act as a single non-faulty server
Background

- **BFT (Byzantine Fault Tolerant) consensus**
 - **Fault model:**
 - $N = 3f + 1$ replicas
 - Up to f replicas can be Byzantine faulty (behave arbitrarily)
 - **Safety:** Any two correct replicas should commit the same request at the same index
 - **Liveness:** A request proposed by a correct client will eventually be committed by all the correct replicas

- **PBFT (Practical Byzantine Fault Tolerance)**
 - Widely adopted by BFT consensus (e.g., Hyperledger Fabric, ELASTICO, and ByzCoin)
Background

- **PBFT (Practical Byzantine Fault Tolerance)**
 - $N = 3f + 1$, and replicas are denoted as p_0, p_1, \ldots, p_n
 - Work in successive views

![Diagram of PBFT algorithm](image)
Background

- **PBFT (Practical Byzantine Fault Tolerance)**
 - \(N = 3f + 1 \), and replicas are denoted as \(p_0, p_1, \ldots, p_n \)
 - Work in successive views

![Diagram showing the three phases to reach consensus: too long!](image-url)

![Diagram showing the view change](image-url)

Three phases to reach consensus: too long!

Normal case

View change

2f + 1
Background

• Many works aim to reduce the commit phases

Three phases commit

Two phases commit

Normal case

Normal case
Motivation

• Many works aim to reduce the commit phases

<table>
<thead>
<tr>
<th>Description</th>
<th>Con.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zyzzyva[^SOSP’07]</td>
<td>Rely on correct clients</td>
</tr>
<tr>
<td>FastBFT[^TC’18]</td>
<td>Rely on trusted hardware</td>
</tr>
<tr>
<td>SBFT[^DSN’19]</td>
<td>Need extra correct replicas</td>
</tr>
</tbody>
</table>

Can we reduce the commitment phases (i.e., latencies) without sacrificing security or resilience?
Trebiz Design

• Main ideas

- Fast-path commitment rule
- Two-phase commitment
- New fault model
- Guarantee the liveness

Trebiz: A fast BFT consensus with optimal resilience and strong security
• New fault model
 • Replicas tend to keep the whole system running rather than pushing it to a halt
 • May break safety but will not break liveness
 • Named as “Byzantine Merchant”

System halts or crashes ➔ All replicas suffer a loss
• **New fault model**
 - Divide Byzantine fault into Byzantine General and Byzantine Merchant
 - $N = 3f + 1 = n_c + n_g + n_a + n_p$
 - Up to f replicas can be Byzantine faulty
 - $n_g + n_a + n_p \leq f$

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>Obey the protocol</td>
<td>n_c</td>
</tr>
<tr>
<td>Byzantine General (BG)</td>
<td>Deviate from the protocol arbitrarily</td>
<td>n_g</td>
</tr>
<tr>
<td>Byzantine Merchant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active (ABM)</td>
<td>Break safety but maintain liveness actively</td>
<td>n_a</td>
</tr>
<tr>
<td>Passive (PBM)</td>
<td>Break safety but maintain liveness passively</td>
<td>n_p</td>
</tr>
</tbody>
</table>
Normal case of Trebiz

- $k = f - n_a - [n_p/2]$
- Commit directly if receive $2f + k + 1$ prepare msgs, otherwise continue as PBFT
Trebiz Design

- **View change of Trebiz**
 - New leader waits for $2f + 1 + n_a + n_p$ view-changemsgs to create new-view msg
• An example for the fast-path commitment
 • \(k = f - n_a - \lfloor n_p / 2 \rfloor = 2 \)
 • BM tries to break safety

In the worst case, the new leader can not assign a conflict \(r' \) to index 2.
Trebiz Design

- An example for the fast-path commitment
 - \(k = f - n_a - \lfloor n_p / 2 \rfloor = 2 \)
 - BM tries to maintain liveness

![Diagram showing the Trebiz Design with an example for the fast-path commitment.]

- Pre-prepare
- Prepare
- View change
- New-view

- Normal case \((f=4, n_g=1, n_a=1, n_p=2)\)
- View change \((f=4, n_g=1, n_a=1, n_p=2)\)

The new leader can assign \(r \) to index 2 safely.
Evaluation

• Implementation and experimental setting
 • Prototype implementation
 • Implement PBFT in Golang, and implement Trebiz on top of PBFT
 • Experimental environment
 • Alibaba cloud ECS.c6.2xlarge instance
 • 8 vCPU, 16 GB memory and 100 Mbps bandwidth
 • Spanning 5 continents
 • Malicious behavior simulation of malicious replicas
 • Be non-responsive with a probability ρ
Evaluation

• Latency comparison between PBFT and Trebiz-BG
 • Trebiz-BG outperforms PBFT when the number of Byzantine replicas is small
Evaluation

- Latency comparison
 - More BM, lower latency in Trebiz-BM

Trebiz-BM \((t_a, t_p)\)
- \(t_a\) and \(t_p\) are the portions of ABM and PBM

![Graph showing latency comparison](image_url)

(a) \(\rho = 0.5\)

(b) \(\rho = 0.2\)
Evaluation

• Latency vs. throughput
 • Higher throughput and lower latency in Trebiz-BM

(a) $\rho = 0.5$

(b) $\rho = 0.2$
Conclusion

- Take a re-understanding of fault models by considering the economical interests and propose a new fault model, which classifies Byzantine replicas into BG, ABM, and PBM.

- Propose a fast consensus protocol named Trebiz, which achieves fast-path commitment with optimal resilience and strong security.

- Implement a prototype of Trebiz and conduct extensive experiments to demonstrate its feasibility and efficiency.
More questions, please feel free to contact us: hustlp@hust.edu.cn