
Practical Binary Code Similarity 
Detection with BERT-based

Transferable Similarity Learning

Sunwoo Ahn
Department of Electrical 

and Computer Engineering

Seoul National University

Seoul, Korea

Seonggwan Ahn
Department of Electrical 

and Computer Engineering

Seoul National University

Seoul, Korea

Yunheung Paek
Department of Electrical and 

Computer Engineering

Seoul National University

Seoul, Korea

Hyungjoon Koo
Department of Computer 
Science and Engineering

Sungkyunkwan University

Suwon, Korea



Binary Code Similarity Detection (BCSD)

• BCSD Problem

• Many applications
• Code clone detection
• Malware detection
• Malware family classification
• Known vulnerability discovery
• Code patching verification

machine code 
snippet A

machine code 
snippet B

Proximity?



Challenges

• Useful information is unavailable in a binary
• e.g., variable name, structure, type, class hierarchy, etc.

• Binaries that have identical semantics can vary
• compiler configuration, architecture, obfuscation, etc.

• Halting problem
• Undecidable to prove 

the functional equivalency of two arbitrary programs



Existing Works

• Recent advances employ
neural network with Siamese architecture

Model Architecture

Gemini GNN, Siamese NN

InnerEye word2vec, LSTM, Siamese NN

Asm2Vec PV-DM

PalmTree BERT, GNN, Siamese NN

DeepSemantic BERT, Softmax classifier



Existing Works

• Distance/loss function affects Siamese network
(Marcelli et al., USENIX '22)

• Scalar value  oversimplification

Model Distance function Loss function

Gemini Cosine distance Contrastive loss

InnerEye Cosine distance Contrastive loss

Asm2Vec Cosine distance Log probability

PalmTree Cosine distance Contrastive loss

DeepSemantic None Cross entropy



Problem

• We question existing work in a realistic scenario

Database

Function 
embeddings of 
one’s interest

BCSD Model

function1

function2

function3

function_n

…

Query function

①

②

Similarity 
score

Query 
Binary

function1

function2

function3

function_m

…



Our Main Approach

• Goal: improve performance for unseen dataset

• Transferable similarity learning (BERT-based)
• Learning a relationship btw instructions with pre-training

• Repeatedly showing good performance on an assembly language

• Better similarity detection: learning a weighted distance vector 
with a binary cross entropy
• Weighted distance  relationships are represented in a vector



BinShot

① Preprocessing for Training Preparation

Executables
(Corpus)

Disassembled
Functions

Normalized
Functions

Pre-processer

② Building a Generic Model for Assembly

BERT

Ins 0 [MASK] Ins 2 [EOS][SOS]

Feed-forward Neural Network

Pre-trained
BERT Model

…
Logits

Pre-trainer

③ Building a Special Model for Code Similarity

Similar
Dissimilar

Downstream Layers Fine-tuned
BERT Model

Fine-tuner

④ Detecting Similarity

Function 
Embeddings

Downstream Model

Target
Function

Prediction: similar?

Predictor



Experimental Setup

• Dataset
• Compiled with 2 compiler (gcc, clang) & 4 optimization (O0-O3)

• 1,400 binaries in total
• GNU utilities – binutils, coreutils, diffutils, findutils

• SPEC2006, SPEC2017

• 11 Real-world programs (BusyBox, Libgmp, …)

• Baseline models: 
• Gemini, Asm2vec, PalmTree, DeepSemantic

• BinShot-CTR, BinShot



Evaluation - Effectiveness

• Evaluate whole dataset

• t-SNE visualization



Evaluation - Transferability

• Trained with SPEC 2006



Evaluation – Vulnerable Function Detection

• Realistic scenario setup
• Database contains

vulnerable function embeddings

• Query binary is stripped

• Goal: find a vulnerable function from a query binary



Evaluation – Runtime Efficiency

• Runtime efficiency
• Exp1 - Each function pair

• Exp2 - 82300 function pairs (100 in database, 823 in query binary) with our predictor

Model Gemini Asm2Vec PalmTree DeepSemantic BinShot-CTR BinShot

Exp1 (ms) 0.10 81.94 1.33 1.34 1.30 1.32

Exp2 (s) 1.16 6,734.66 29.03 1.51 1.45 1.54



Discussions & Limitations

• Mangled Names

• Function inlining

• Code obfuscation and other code constructs

• Rarely appeared instructions



Wrap-up

• Learning a weighted distance with a binary cross entropy
improves robustness against unseen function pairs

• Superiority of BinShot
• effectiveness, practicality (transferability & runtime)

• The other models but ours shows poor performance
in a realistic scenario

• Open source project: https://github.com/asw0316/binshot



Thanks!


