Are There Wireless Hidden Cameras Spying on Me?

Jeongyoon Heo, Sangwon Gil, Youngman Jung, Jinmok Kim, Donguk Kim, Woojin Park, Yongdae Kim, Kang G. Shin, and Choong-Hoon Lee
Motivation

Increasing crime cases

Difficult to find
Design consideration

Spy camera detection CASE 1

Spy camera detection CASE 2

Detected by a lens detection APP
Design consideration

Our approach: Network traffic pattern analysis with smartphone

- High accuracy
- High usability
- No need for dedicated device
Network traffic characteristics of spy cameras

- **Video Compression**
 - Intra-Frame (I-Frame): Include whole information of a scene
 - Inter-frame (P/B-Frame): Encode residuals after frame prediction
 - Inter-frame size increases when changes in video increases

- **Previous works**
 - Network traffic size pattern according to the user’s movement
Challenges

- Challenges to detect spy cameras on wireless networks
 - Encrypted packets
 - Large size I-frames
 - Other types of packets
Challenges

- Challenges to infer inter-frame sizes

 - Video frame size reconstruction
 - Challenge 1: Packet losses

 - Inter-frame size extraction
 - Challenge 2: Remove I-frames
 - Challenge 3: Remove noises
Video frame size reconstruction

- **Challenge 1: Packet losses**

```
<table>
<thead>
<tr>
<th>Seq. number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Packet loss!
Challenges

Video frame size reconstruction

Challenge 1: Packet losses

Inter-frame size extraction

Challenge 2: Remove I-frames
Challenge 3: Remove noises
Inter-frame size extraction

- Challenge2: Remove I-frames
- Challenge3: Remove noises

![Graph showing frame size over time](image)

- Remove I-frames
- Remove same sized and small noise frames
- Remove noise frames which shows bimodal distribution
3 Steps of SCamF

- Propose SCamF to detect and localize wireless spy camera

- Camera Traffic Classification
- Spy Camera Detection
- Spy Camera Localization
3 Steps of SCamF

- SCamF classifies camera and non-camera traffic to reduce the number of candidate spy cameras

Diagram:

1. Camera Traffic Classification
2. Spy Camera Detection
3. Spy Camera Localization
Camera Traffic Classification

Traffic Types

- **Camera traffic**
 - Burst traffic
 - Frame unit transmission

- **Non-camera traffic**

Table

<table>
<thead>
<tr>
<th>Traffic type</th>
<th>Minimum traffic volume (kbps)</th>
<th>Minimum FPS</th>
<th>Average inter-packet time interval (msec)</th>
<th>FU rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
<td>5.2</td>
<td>241.0</td>
<td>52.5</td>
<td>1</td>
</tr>
<tr>
<td>VOD</td>
<td>0</td>
<td>1585.8</td>
<td>175.4</td>
<td>0</td>
</tr>
<tr>
<td>Download</td>
<td>614.0</td>
<td>2043.9</td>
<td>1450.9</td>
<td>0</td>
</tr>
<tr>
<td>Picture</td>
<td>0</td>
<td>897.3</td>
<td>28.4</td>
<td>0</td>
</tr>
<tr>
<td>Game</td>
<td>0</td>
<td>4.0</td>
<td>1.3</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Steps of SCamF

- SCamF verifies the thus-identified devices are indeed spy cameras recording the user’s movements.
Spy camera detection

- SCamF calculates the correlation between inter-frame size changes and the user movement to minimize false positives.
Spy camera detection

Sensor data measured by smartphone

Gyroscope value (rad/s)

Inter-frame size

Frame size (KB)

Time (second)

Spy Camera

Matched

Spy camera!
3 Steps of SCamF

- SCamF localizes the detected spy cameras by observing the video frame size pattern according to the distance between a spy camera and a user.
Spy camera localization

Spy Camera

SCamF

Apply adaptive threshold
Experimental Setup

System Diagram

![Diagram showing setup with Spy Camera and AP](https://via.placeholder.com/150)

Table of Wireless Cameras

<table>
<thead>
<tr>
<th>No.</th>
<th>Brand</th>
<th>Model</th>
<th>Video/Audio Encoding</th>
<th>Resolution</th>
<th>Other Supported Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yi</td>
<td>YYS.2016</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Yi</td>
<td>YHS.2116</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Xiaomi</td>
<td>SXJ01ZM</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>360</td>
<td>D606</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>TP-Link</td>
<td>TL-IPC20-2.8</td>
<td>H.264</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Amcrest</td>
<td>IPM-841B-V3</td>
<td>H.264</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>goospy</td>
<td>S64</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>iCewek</td>
<td>2.0 megapixels ip camera</td>
<td>H.264, AAC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Xiaomi</td>
<td>MJK05CM</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Eglon</td>
<td>TSC-221A</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Hej</td>
<td>GKW-IC52</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Green</td>
<td>PE204</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>JWJ</td>
<td>JCURLI-HOME2</td>
<td>H.264, AAC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Wisenet</td>
<td>SNH-Pe108BN</td>
<td>MPEG-4, AAC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Relohas</td>
<td>S93</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Iuhoe</td>
<td>C-TOP</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>YINEW</td>
<td>U221</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Geagle</td>
<td>Wi-Fi mini camera</td>
<td>H.264, AAC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Xiaomi</td>
<td>MJK09CM</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Wisenet</td>
<td>HNO-E60</td>
<td>H.264, AAC</td>
<td>1080p</td>
<td>-</td>
</tr>
</tbody>
</table>

Summary

20 wireless cameras in online stores
Performance of SCamF

<table>
<thead>
<tr>
<th>Spy camera classification</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
<th>F1 score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.935</td>
<td>1</td>
<td>0.978</td>
<td>0.966</td>
</tr>
</tbody>
</table>

Spy camera detection

Spy camera localization

Propose a fine-grained encrypted traffic analysis approach, SCamF to detect and localize spy cameras

- Extract Inter-frame size information from encrypted Wi-Fi traffic
- Determine both the presence and the location of spy cameras
- Achieve high accuracy and low false positives
Thank You

Contact: jr.heo@samsung.com