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Introduction 

Dilithium 

• One of third-round Signature finalists(The final Signature scheme 

to be standardized) 

•  Module-LWE and Module-SIS 

• Small keys and signatures 

• Operates in ℝ𝑞 = ℤ𝑞 𝑥 /(𝑥𝑛 + 1) 

• Allows efficient polynomial multiplication with NTT 

• Parameters: 𝑛 = 256, 𝑞 = 8380417 



顾逸圣     @阿尔戈 

Small Polynomial 

• Coefficients are much smaller than 𝑞. 

• Most coefficients are 0，few are ±1. 

Small Polynomial Multiplication  

Dilithium Sign and Verify 

Motivation 



Motivation 

The previous technique to speed up polynomial 

multiplication is Number Theoretic Transform(NTT).  

Can we derive a polynomial multiplication for small 

polynomial? 

The answer is “Yes!”  
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NTT Technique 



Parallel index-based polynomial multiplication algorithm 

Index-based polynomial multiplication 

Nonnegative Index-based polynomial multiplication 

Small Polynomial Multiplication: 

Technique Overview 



Index-based Small Polynomial Multiplication 
 For 𝑢 =  𝑢 ∙ 𝑥𝑖𝑛−1

𝑖=0 , 0 ≤ 𝑖 ≤ 𝑛 − 2 we have : 

𝑢𝑖 =  𝑐𝑗 · 𝑎𝑖−𝑗

𝑖

𝑗=0

−  𝑐𝑗 · 𝑎𝑛+𝑖−𝑗

𝑛−1

𝑗=𝑖+1

=  𝑐𝑗 · 𝑎𝑖−𝑗

𝑖

𝑗=0

+  𝑐𝑗 · −𝑎𝑛+𝑖−𝑗

𝑛−1

𝑗=𝑖+1

 

 For 𝑖 = 𝑛 − 1, we have 𝑢𝑖 =  𝑐𝑗 · 𝑎𝑖−𝑗

𝑛−1

𝑗=0
. 

𝑐𝑗 · 𝑎𝑖−𝑗 and 𝑐𝑗 · 𝑎𝑛+𝑖−𝑗 can be replaced by 𝑎𝑖−𝑗 

and 𝑎𝑛+𝑖−𝑗  ( 𝑐𝑗 = 1), −𝑎𝑖−𝑗  and −𝑎𝑛+𝑖−𝑗 

(𝑐𝑗 = −1). 



Index-based Small Polynomial Multiplication 

Addition and subtraction replace multiplication 



 Nonnegative Small Polynomial Multiplication 

 The above algorithm is  not suitable for deriving parallel 

algorithm. 

 Make algorithm nonnegative. 

𝑣1−𝑛 𝑣2−𝑛 … 𝑣−1 𝑣0 𝑣1 … 𝑣𝑛−1 

𝑈 + 𝑎𝑖 𝑈 − 𝑎𝑛+𝑖 

 𝑈 is upper bound of coefficients. 



 Compute 𝑐 ⋅ 𝒂 

 𝑐 ∈ 𝐵𝜏, 𝑐𝑖 ∈ −1,0,1  

 𝒂 = [𝑎 0 , … , 𝑎 𝑟−1 ]𝑇∈ 𝑅𝑞
𝑟 is a polynomial vector, there exists 

an constant 𝑈 that 𝒂(𝒋)
∞

≤ 𝑈，∀𝑗 ∈ 0,1, … , 𝑟 − 1 , 𝑟 is the 

number of polynomial that a word (64bit) can pack.  

Parallel Small Polynomial Multiplication 

uint64_t 

𝒔𝒊
𝟎 

little enidian big enidian 

𝒔𝒊
𝟏 𝒔𝒊

𝟎 𝒔𝒊
𝟐 𝒔𝒊

𝟑 𝒆𝒊
𝟎 𝒆𝒊

𝟏 𝒆𝒊
𝟐 𝒆𝒊

𝟑 



Parallel Small Polynomial Multiplication 

Pack vector coefficients 
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Experimental Results 

• For Dilithium-2, we achieve 18% 

speed-up in Sign,  19% in Verify. 

•  For Dilithium-3, we achieve 30% 

speed-up in Sign,  7% in Verify.  

• For Dilithium-5, we achieve 27% 

speed-up in Sign, 3% speed-up in 

Verify. 
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Experimental Results 

• For Dilithium-2, we achieve 64% 

speed-up in Sign,  50% in Verify. 

•  For Dilithium-3, we achieve 60% 

speed-up in Sign,  32% in Verify.  
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Experimental Results 

• Compared with the state-of-art 

implementation. 

• For Dilithium-2, we achieve 13.4% speed-up 

in Sign. 

•  For Dilithium-3, we achieve 8% speed-up in 

Sign.  



Experimental Results 

• Compared with the NTT technique implementation. 

• For 𝑐𝑠 &𝑐𝑒 , we achieve 88% speed-up. 

• For 𝑐𝑡0, we achieve 84% speed-up.  

• For 𝑐𝑡1, we achieve 87% speed-up.  

 

• Polynomial vector multiplication in Dilithium-3 



 We exhibit a small polynomial multiplication parallel algorithm. 

 We complete the C reference implementation. 

 We improve the algorithm by Neon vector extension on the Cortex-

A72 platform. 

 Our Arm Neon implementation of Dilithium achieves a new record of 

fast Dilithium implementation. 

 

 

Conclusion 



THANKS! 

Parallel Small 
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Multiplication for 
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A Faster Design 
and 

Implementation 

Questions? 


