Parallel Small Polynomial Multiplication for Dilithium: A Faster Design and Implementation

Jieyu Zheng¹, Feng He¹, Shen Shiyu¹, Chenxi Xue¹, Yunlei Zhao¹ ¹School of Computer Science, Fudan University {jieyuzheng21,shenshiyu21,cxxue21}@m.fudan.edu.cn {fhe20,ylzhao}@fudan.edu.cn

Annual Computer Security Applications Conference(ACSAC)

December 5-9, 2022

Outline

- Introduction
- Motivation
- Small Polynomial Multiplication
- Experimental results
- Conclusion

Introduction

Dilithium

- One of third-round Signature finalists(The final Signature scheme to be standardized)
- Module-LWE and Module-SIS
- Small keys and signatures
- Operates in $\mathbb{R}_q = \mathbb{Z}_q[x]/(x^n + 1)$
 - Allows efficient polynomial multiplication with NTT
- Parameters: n = 256, q = 8380417

Motivation

Dilithium Sign and Verify

```
Sign(sk, M)
09 \mathbf{A} \in R_q^{k \times \ell} := \mathsf{ExpandA}(\rho)
                                                                          \triangleright \mathbf{A} is generated and stored in NTT Representation as \hat{\mathbf{A}}
10 \mu \in \{0,1\}^{384} := \mathsf{CRH}(tr \parallel M)
11 \kappa := 0, (\mathbf{z}, \mathbf{h}) := \bot
12 \rho' \in \{0,1\}^{384} := \mathsf{CRH}(K \parallel \mu) \text{ (or } \rho' \leftarrow \{0,1\}^{384} \text{ for randomized signing)}
13 while (\mathbf{z}, \mathbf{h}) = \bot do
                                                          \triangleright Pre-compute \hat{\mathbf{s}}_1 := \mathsf{NTT}(\mathbf{s}_1), \hat{\mathbf{s}}_2 := \mathsf{NTT}(\mathbf{s}_2), \text{ and } \hat{\mathbf{t}}_0 := \mathsf{NTT}(\mathbf{t}_0)
          \mathbf{y} \in \tilde{S}_{\gamma_1}^{\ell} := \mathsf{ExpandMask}(\rho', \kappa)
                                                                                                                                                \triangleright \mathbf{w} := \mathrm{NTT}^{-1}(\hat{\mathbf{A}} \cdot \mathrm{NTT}(\mathbf{y}))
           \mathbf{w} := \mathbf{A}\mathbf{y}
15
           \mathbf{w}_1 := \mathsf{HighBits}_a(\mathbf{w}, 2\gamma_2)
16
          \tilde{c} \in \{0,1\}^{256} := \mathsf{H}(\mu \parallel \mathbf{w}_1)
17
           c \in B_{\tau} := \mathsf{SampleInBall}(\tilde{c})
                                                                                                  \triangleright Store c in NTT representation as \hat{c} = \text{NTT}(c)
18
          \mathbf{z} := \mathbf{y} + c\mathbf{s}_{1}
                                                                                                                                    \triangleright Compute c\mathbf{s}_1 as \mathrm{NTT}^{-1}(\hat{c}\cdot\hat{\mathbf{s}}_1)
19
20 \mathbf{r}_0 := \mathsf{LowBits}_q(\mathbf{w} - c\mathbf{s}_2, 2\gamma_2)
                                                                                                                                    \triangleright Compute c\mathbf{s}_2 as \mathrm{NTT}^{-1}(\hat{c}\cdot\hat{\mathbf{s}}_2)
          if \|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta or \|\mathbf{r}_0\|_{\infty} \geq \gamma_2 - \beta, then (\mathbf{z}, \mathbf{h}) := \bot
21
22
           else
               \mathbf{h} := \mathsf{MakeHint}_{q}(-c\mathbf{t}_{0}, \mathbf{w} - c\mathbf{s}_{2} + c\mathbf{t}_{0}, 2\gamma_{2})
                                                                                                                    \triangleright Compute c\mathbf{t}_0 as \mathrm{NTT}^{-1}(\hat{c}\cdot\hat{\mathbf{t}}_0)
23
                if ||c\mathbf{t}_0||_{\infty} \geq \gamma_2 or the # of 1's in h is greater than \omega, then (\mathbf{z}, \mathbf{h}) := \bot
24
          \kappa := \kappa + \ell
25
26 return \sigma = (\mathbf{z}, \mathbf{h}, \tilde{c})
\mathsf{Verify}(pk, M, \sigma = (\mathbf{z}, \mathbf{h}, \tilde{c}))
27 \mathbf{A} \in R_a^{k \times \ell} := \mathsf{ExpandA}(\rho)
                                                                                \triangleright A is generated and stored in NTT Representation as \hat{A}
28 \mu \in \{0,1\}^{384} := \mathsf{CRH}(\mathsf{CRH}(\rho \parallel \mathbf{t}_1) \parallel M)
29 c := \mathsf{SampleInBall}(\tilde{c})
30 \mathbf{w}'_1 := \mathsf{UseHint}_q(\mathbf{h}, \mathbf{Az} - [c\bar{\mathbf{t}}_1] \cdot 2^d, 2\gamma_2) \triangleright \underline{\mathrm{Compute}} \text{ as } \mathsf{NTT}^{-1}_-(\hat{\mathbf{A}} - \mathsf{NTT}(\mathbf{z}) - \mathsf{NTT}(\mathbf{t}_1 \cdot 2^d))^{-1}
```

31 return $\llbracket \| \mathbf{z} \|_{\infty} < \gamma_1 - \beta \rrbracket$ and $\llbracket \tilde{c} = \mathsf{H}(\mu \parallel \mathbf{w}_1) \rrbracket$ and $\llbracket \#$ of 1's in \mathbf{h} is $\leq \omega \rrbracket$

Small Polynomial

- Coefficients are much smaller than *q*.
- Most coefficients are 0, few are ± 1 .

```
\begin{array}{l}
    \hline
        SampleInBall(\rho) \\
        \hline
        01 Initialize \mathbf{c} = c_0 c_1 \dots c_{255} = 00 \dots 0 \\
        02 \textbf{ for } i := 256 - \tau \text{ to } 255 \\
        03 \quad j \leftarrow \{0, 1, \dots, i\} \\
        04 \quad s \leftarrow \{0, 1\} \\
        05 \quad c_i := c_j \\
        06 \quad c_j := (-1)^s \\
        07 \textbf{ return c} \\
    \end{array}
```

Small Polynomial Multiplication

Motivation

NTT Technique

The previous technique to speed up polynomial multiplication is Number Theoretic Transform(NTT). Can we derive a polynomial multiplication for small polynomial?

The answer is "Yes!"

Small Polynomial Multiplication: Technique Overview

Index-based Small Polynomial Multiplication

• For $u = \sum_{i=0}^{n-1} u \cdot x^i$, $0 \le i \le n-2$ we have :

$$u_{i} = \sum_{j=0}^{i} c_{j} \cdot a_{i-j} - \sum_{j=i+1}^{n-1} c_{j} \cdot a_{n+i-j} = \sum_{j=0}^{i} c_{j} \cdot a_{i-j} + \sum_{j=i+1}^{n-1} c_{j} \cdot (-a_{n+i-j})$$

• For i = n - 1, we have $u_i = \sum_{j=0}^{n-1} c_j \cdot a_{i-j}$.

$$c_j \cdot a_{i-j}$$
 and $c_j \cdot a_{n+i-j}$ can be replaced by a_{i-j}
and a_{n+i-j} ($c_j = 1$), $-a_{i-j}$ and $-a_{n+i-j}$
($c_i = -1$).

Index-based Small Polynomial Multiplication

Algorithm 6 An alternative index-based polynomial multiplication algorithm for computing **ca**

i=0

22: return u

Input:
$$\mathbf{c} = \sum_{i=0}^{n-1} c_i \cdot x^i \in \mathcal{B}_r$$
, $\mathbf{a} = \sum_{i=0}^{n-1} a_i \cdot x^i \in \mathcal{R}_q$
Output: $\mathbf{u} = \mathbf{c} \cdot \mathbf{a} \in \mathcal{R}_q$
i: for $i \in \{0, 1, \dots, n-1\}$ do
3. $v_i := a_i$
5. end for
6. for $i \in \{0, 1, \dots, n-1\}$ do
7. if $c_i = 1$ then
8. for $j \in \{0, 1, \dots, n-1\}$ do
9. $w_j := w_j + v_{j-i}$
10. end for
11. end if
12. if $c_i = -1$ then
13. for $j \in \{0, 1, \dots, n-1\}$ do
14. $w_j := w_j - v_{j-i}$
15. end for
16. end if
17. end for
18. for $i \in \{0, 1, \dots, n-1\}$ do
19. $w_i := w_i (mod q)$
20. $w_i \in \mathbb{R}_q$
20. end for
21. $\mathbf{u} := \sum_{i=0}^{n-1} c_i \cdot x^i$
22. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
23. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
24. $\mathbf{u} := \sum_{i=0}^{n-1} c_i \cdot x^i$
25. $\mathbf{u} \in \mathbb{R}_q$
26. end for
21. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
25. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
26. $\mathbf{u} := \sum_{i=0}^{n-1} c_i \cdot x^i$
27. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
28. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
29. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
20. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
20. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
20. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
21. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
22. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
23. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
24. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
25. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
26. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
27. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
28. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
29. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
20. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
20. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
21. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
22. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
23. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
24. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
25. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
26. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
27. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
28. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
29. $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$
20. $\mathbf{u} := \sum_{i=0}^{$

Nonnegative Small Polynomial Multiplication

• The above algorithm is not suitable for deriving parallel algorithm.

• Make algorithm nonnegative.

• *U* is upper bound of coefficients.

Algorithm 7 An index-based polynomial multiplication algorithm with translations

Input:
$$\mathbf{c} = \sum_{i=0}^{n-1} c_i \cdot x^i \in B_r$$
, $\mathbf{a} = \sum_{i=0}^{n-1} a_i \cdot x^i \in \mathcal{R}_q$
Output: $\mathbf{u} = \mathbf{c} \cdot \mathbf{a} \in \mathcal{R}_q$
1: for $i \in \{0, 1, \dots, n-1\}$ do
2: $w_i := 0$
3: $v_i := U + a_i$
4: $v_{i-n} := U - a_i$
5: end for
6: for $i \in \{0, 1, \dots, n-1\}$ do
7: if $c_i = 1$ then
8: for $j \in \{0, 1, \dots, n-1\}$ do
9: $w_j := w_j + v_{j-i}$
10: end for
11: end if
12: if $c_i = -1$ then
13: for $j \in \{0, 1, \dots, n-1\}$ do
14: $w_j := w_j + (2U - v_{j-i})$
15: end for
16: end if
17: end for
18: for $i \in \{0, 1, \dots, n-1\}$ do
19: $u_i := w_i - \tau U \pmod{q}$ $\triangleright u_i \in \mathbb{F}_q$
20: end for
21: $\mathbf{u} := \sum_{i=0}^{n-1} u_i \cdot x^i$ $\triangleright \mathbf{u} \in \mathcal{R}_q$
22: return \mathbf{u}

Parallel Small Polynomial Multiplication

- Compute $c \cdot \vec{a}$
 - $c \in B_{\tau}, c_i \in \{-1, 0, 1\}$
 - $\vec{a} = [a^{(0)}, ..., a^{(r-1)}]^T \in R_q^r$ is a polynomial vector, there exists

an constant U that $\|a^{(j)}\|_{\infty} \leq U$, $\forall j \in \{0, 1, \dots, r-1\}$, r is the

number of polynomial that a word (64bit) can pack.

Parallel Small Polynomial Multiplication

Algorithm 9 A parallel index-based polynomial multiplication algorithm with translations

Input: $(\mathbf{c}, \overrightarrow{\mathbf{a}})$, where • $\mathbf{c} = \sum_{i=0}^{n-1} c_i \cdot x^i \in B_{\tau};$ • $\overrightarrow{\mathbf{a}} = \left\{ \mathbf{a}^{(j)} \right\} \in \mathcal{R}_q^r;$ • Every $\mathbf{a}^{(j)} = \sum_{i=0}^{n-1} a_i^{(j)} \cdot x^i \in \mathcal{R}_q;$ • Every $a_i^{(j)} \in \{-U, \cdots, U\}$ **Output:** $\overrightarrow{\mathbf{u}} = \left[\mathbf{u}^{(0)}, \cdots, \mathbf{u}^{(r-1)}\right]^T \in \mathcal{R}_q^r$, where • $\mathbf{u}^{(j)} = \mathbf{c} \cdot \mathbf{a}^{(j)} \in \mathcal{R}_q;$ 1: for $i \in \{0, 1, \dots, n-1\}$ do $w_i := 0$ 2: $v_i := 0$ 3: $v_{i-n} := 0$ 4: **for** j = 0 **to** r - 1 **do** 5: $v_i := v_i \cdot M + \left(U + a_i^{(j)}\right)$ 6: $v_{i-n} \coloneqq v_{i-n} \cdot M + \left(U - a_i^{(j)}\right)$ 7: end for 8: 9: end for 10: $\gamma := 2U \cdot \frac{M^{r}-1}{M-1}$ ▶ $\gamma \in \mathbb{Z}^{>0}$

11: for $i \in \{0, 1, \dots, n-1\}$ do if $c_i = 1$ then 12: for $j \in \{0, 1, \dots, n-1\}$ do 13: $w_i := w_i + v_{j-i}$ 14: end for 15: end if 16: if $c_i = -1$ then 17: for $j \in \{0, 1, \dots, n-1\}$ do 18: $\triangleright \gamma = 2U \cdot \frac{M^r - 1}{M - 1}$ $w_{i} := w_{i} + (\gamma - v_{i-i})$ 19: end for 20: end if 21:22: end for 23: for $i \in \{0, 1, \dots, n-1\}$ do $t := w_i$ 24: for j = 0 to r - 1 do 25: $u_i^{(r-1-j)} \coloneqq (t \mod M) - \tau U \pmod{q}$ 26: $t := \lfloor t/M \rfloor$ 27: end for Pack vector coefficients ^{28:} 29: end for 30: **for** $j \in \{0, 1, \cdots, r-1\}$ **do** 31: $\mathbf{u}^{(j)} := \sum_{i=0}^{n-1} u_i^{(j)} \cdot x^i$ 32: **end for** 33: $\overrightarrow{\mathbf{u}} := \left[\mathbf{u}^{(0)}, \cdots, \mathbf{u}^{(r-1)}\right]^T$ 34: return **u**

Before After

	Before	After
Sign in Dilithium-2	748500	628171
Verification in Dilithium-2	185022	166419
Sign in Dilithium-3	1281313	891613
Verification in Dilithium-3	291921	269118
Sign in Dilithium-5	1577046	1148236
Verification in Dilithium-5	474205	456961

Table 5: Reference Implementation Comparitive Results incpucycles.

- For Dilithium-2, we achieve 18% speed-up in Sign, 19% in Verify.
- For Dilithium-3, we achieve 30% speed-up in Sign, 7% in Verify.
- For Dilithium-5, we achieve 27% speed-up in Sign, 3% speed-up in Verify.

	Reference code	Our work
Sign in Dilithium-2	8223359	2934124
Verification in Dilithium-2	1941673	1231796
Sign in Dilithium-3	12166847	4927678
Verification in Dilithium-3	3063575	2073518

Table 6: Our neon implementation and reference Implemen-tation Comparitive Results in cpucycles.

- For Dilithium-2, we achieve 64% speed-up in Sign, 50% in Verify.
- For Dilithium-3, we achieve 60% speed-up in Sign, 32% in Verify.

	[4]	Our work
Sign in Dilithium-2	3327206	2934124
Verification in Dilithium-2	1191080	1231796
Sign in Dilithium-3	5321618	4927678
Verification in Dilithium-3	2018945	2073518

Table 7: Arm neon Implementation Comparitive Results incpucycles.

- Compared with the state-of-art implementation.
- For Dilithium-2, we achieve 13.4% speed-up in Sign.
- For Dilithium-3, we achieve 8% speed-up in Sign.

[4] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and Shang Yi Yang. 2022. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022), 221–244.https://doi.org/10.46586/tches.v2022.i1.221-244

• Polynomial vector multiplication in Dilithium-3

	Our Algorithm	NTT
$\overrightarrow{\mathbf{c} \ \mathbf{s}} \& \overrightarrow{\mathbf{c} \ \mathbf{e}}$ in Dilithium-3	8477	73924
$\overrightarrow{\mathbf{c} \mathbf{t}}_0$ in Dilithium-3	14132	88198
$\overrightarrow{\mathbf{c} \mathbf{t}}_1$ in Dilithium-3	11760	90992

- Compared with the NTT technique implementation.
- For $c\vec{s}\&c\vec{e}$, we achieve 88% speed-up.
- For $c\vec{t_0}$, we achieve 84% speed-up.
- For $c\vec{t_1}$, we achieve 87% speed-up.

Conclusion

- We exhibit a small polynomial multiplication parallel algorithm.
- We complete the C reference implementation.
- We improve the algorithm by Neon vector extension on the Cortex-A72 platform.
- Our Arm Neon implementation of Dilithium achieves a new record of fast Dilithium implementation.

Parallel Small Polynomial Multiplication for Dilithium: A Faster Design and Implementation

THANKS!

Questions?