
Parallel Small Polynomial Multiplication for Dilithium:

A Faster Design and Implementation

Jieyu Zheng1, Feng He1, Shen Shiyu1, Chenxi Xue1, Yunlei Zhao1

1School of Computer Science, Fudan University

{jieyuzheng21,shenshiyu21,cxxue21}@m.fudan.edu.cn {fhe20,ylzhao}@fudan.edu.cn

Annual Computer Security Applications Conference(ACSAC)

 December 5-9, 2022

Outline

• Introduction

• Motivation

• Small Polynomial Multiplication

• Experimental results

• Conclusion

Introduction

Dilithium

• One of third-round Signature finalists(The final Signature scheme

to be standardized)

• Module-LWE and Module-SIS

• Small keys and signatures

• Operates in ℝ𝑞 = ℤ𝑞 𝑥 /(𝑥𝑛 + 1)

• Allows efficient polynomial multiplication with NTT

• Parameters: 𝑛 = 256, 𝑞 = 8380417

顾逸圣 @阿尔戈

Small Polynomial

• Coefficients are much smaller than 𝑞.

• Most coefficients are 0，few are ±1.

Small Polynomial Multiplication

Dilithium Sign and Verify

Motivation

Motivation

The previous technique to speed up polynomial

multiplication is Number Theoretic Transform(NTT).

Can we derive a polynomial multiplication for small

polynomial?

The answer is “Yes!”

𝑓 𝑔

𝑁𝑇𝑇 𝑁𝑇𝑇

𝑓 𝑔

 = 𝑓 ∘ 𝑔

𝑁𝑇𝑇−1

NTT Technique

Parallel index-based polynomial multiplication algorithm

Index-based polynomial multiplication

Nonnegative Index-based polynomial multiplication

Small Polynomial Multiplication:

Technique Overview

Index-based Small Polynomial Multiplication
 For 𝑢 = 𝑢 ∙ 𝑥𝑖𝑛−1

𝑖=0 , 0 ≤ 𝑖 ≤ 𝑛 − 2 we have :

𝑢𝑖 = 𝑐𝑗 · 𝑎𝑖−𝑗

𝑖

𝑗=0

− 𝑐𝑗 · 𝑎𝑛+𝑖−𝑗

𝑛−1

𝑗=𝑖+1

= 𝑐𝑗 · 𝑎𝑖−𝑗

𝑖

𝑗=0

+ 𝑐𝑗 · −𝑎𝑛+𝑖−𝑗

𝑛−1

𝑗=𝑖+1

 For 𝑖 = 𝑛 − 1, we have 𝑢𝑖 = 𝑐𝑗 · 𝑎𝑖−𝑗

𝑛−1

𝑗=0
.

𝑐𝑗 · 𝑎𝑖−𝑗 and 𝑐𝑗 · 𝑎𝑛+𝑖−𝑗 can be replaced by 𝑎𝑖−𝑗

and 𝑎𝑛+𝑖−𝑗 (𝑐𝑗 = 1), −𝑎𝑖−𝑗 and −𝑎𝑛+𝑖−𝑗

(𝑐𝑗 = −1).

Index-based Small Polynomial Multiplication

Addition and subtraction replace multiplication

 Nonnegative Small Polynomial Multiplication

 The above algorithm is not suitable for deriving parallel

algorithm.

 Make algorithm nonnegative.

𝑣1−𝑛 𝑣2−𝑛 … 𝑣−1 𝑣0 𝑣1 … 𝑣𝑛−1

𝑈 + 𝑎𝑖 𝑈 − 𝑎𝑛+𝑖

 𝑈 is upper bound of coefficients.

 Compute 𝑐 ⋅ 𝒂

 𝑐 ∈ 𝐵𝜏, 𝑐𝑖 ∈ −1,0,1

 𝒂 = [𝑎 0 , … , 𝑎 𝑟−1]𝑇∈ 𝑅𝑞
𝑟 is a polynomial vector, there exists

an constant 𝑈 that 𝒂(𝒋)
∞

≤ 𝑈，∀𝑗 ∈ 0,1, … , 𝑟 − 1 , 𝑟 is the

number of polynomial that a word (64bit) can pack.

Parallel Small Polynomial Multiplication

uint64_t

𝒔𝒊
𝟎

little enidian big enidian

𝒔𝒊
𝟏 𝒔𝒊

𝟎 𝒔𝒊
𝟐 𝒔𝒊

𝟑 𝒆𝒊
𝟎 𝒆𝒊

𝟏 𝒆𝒊
𝟐 𝒆𝒊

𝟑

Parallel Small Polynomial Multiplication

Pack vector coefficients

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Sign in Dilithium-2 Verification in
Dilithium-2

Sign in Dilithium-3 Verification in
Dilithium-3

Sign in Dilithium-5 Verification in
Dilithium-5

C Reference Implementation

Before After

Experimental Results

• For Dilithium-2, we achieve 18%

speed-up in Sign, 19% in Verify.

• For Dilithium-3, we achieve 30%

speed-up in Sign, 7% in Verify.

• For Dilithium-5, we achieve 27%

speed-up in Sign, 3% speed-up in

Verify.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

Sign in Dilithium-2 Verification in Dilithium-2 Sign in Dilithium-3 Verification in Dilithium-3

Arm Neon implementation

Reference code Our work

Experimental Results

• For Dilithium-2, we achieve 64%

speed-up in Sign, 50% in Verify.

• For Dilithium-3, we achieve 60%

speed-up in Sign, 32% in Verify.

0

1000000

2000000

3000000

4000000

5000000

6000000

Sign in Dilithium-2 Verification in Dilithium-
2

Sign in Dilithium-3 Verification in Dilithium-
3

Arm Neon implementation

[4] Our work

[4] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and Shang Yi Yang. 2022. Neon NTT: Faster

Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 1 (2022),

221–244.https://doi.org/10.46586/tches.v2022.i1.221-244

Experimental Results

• Compared with the state-of-art

implementation.

• For Dilithium-2, we achieve 13.4% speed-up

in Sign.

• For Dilithium-3, we achieve 8% speed-up in

Sign.

Experimental Results

• Compared with the NTT technique implementation.

• For 𝑐𝑠 &𝑐𝑒 , we achieve 88% speed-up.

• For 𝑐𝑡0, we achieve 84% speed-up.

• For 𝑐𝑡1, we achieve 87% speed-up.

• Polynomial vector multiplication in Dilithium-3

 We exhibit a small polynomial multiplication parallel algorithm.

 We complete the C reference implementation.

 We improve the algorithm by Neon vector extension on the Cortex-

A72 platform.

 Our Arm Neon implementation of Dilithium achieves a new record of

fast Dilithium implementation.

Conclusion

THANKS!

Parallel Small
Polynomial

Multiplication for
Dilithium:

A Faster Design
and

Implementation

Questions?

