
CryptoGo: Automatic Detection

of Go Cryptographic API Misuses

Wenqing Li, Shijie Jia, Limin Liu,

Fangyu Zheng, Yuan Ma, Jingqiang Lin

ACSAC 2022

https://www.acsac.org/

Talk Outline

How does it

work?

How to classify

cryptographic

algorithm and

derive detection

rules?

Why did we start

this work?

Conclusions and

reflections

How is the

performance?

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Talk Outline

How does it

work?

How to classify

cryptographic

algorithm and

derive detection

rules?

Why did we start

this work?

Conclusions and

reflections

How is the

performance?

M o t i v a t i o n C o n c l u s i o nC r y p t o G o D e s i g nR u l e s E v a l u a t i o n

Background

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

What is cryptographic misuse?

• Incorrect implementations of cryptographic

algorithms/protocols seriously jeopardize

system security in practice.

• Cryptographic Misuse: The above

erroneous implementations.

Cryptographic Misuse

Background

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

API

API API

API

Cryptography can be used to offer basic security services (e.g., confidentiality, integrity,
authenticity), thus constitutes the cornerstone of secure systems.

• Developers without cryptography knowledge

• Misusing various cryptographic APIs

• Reduce the security of cryptographic projects

Background

01

02

Issues

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Are the cryptographic library APIs really secure?

Will developers really be able to make these cryptographic APIs work?

overly complicated poorly documented

lack cryptography experience

CryptoGo

In-depth analysis of the latest official Go cryptographic library (v1.18.3)

↓

Tease out all the provided cryptographic algorithms

↓

Put forward an algorithm classification method based on security strength and security vulnerability

↓

Derive 12 cryptographic rules

↓

Leverages static taint analysis technique

↓

Takes a Go project program file as input and outputs a cryptographic misuse analysis report

the Go standard library (i.e., crypto/...) and the supplemental repositories (i.e., golang.org/x/crypto/...)

Overview

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

1) Classify the cryptographic algorithms and

derive the corresponding rules.

2) Develop a tool to detect cryptographic

misuse issues in Go projects.

the two key insights

Cryptographic API misuses within the Go landscape are still uncovered.

Talk Outline

How does it

work?

How to classify

cryptographic

algorithm and

derive detection

rules?

Why did we start

this work?

Conclusions and

reflections

How is the

performance?

M o t i v a t i o n C o n c l u s i o nC r y p t o G o D e s i g nR u l e s E v a l u a t i o n

Classification

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Security Strength Symmetric Key Algorithms FFC (DSA, DH, MQV) IFC* (RSA) ECC* (ECDSA, EdDSA, DH, MQV)

≤80 2TDEA L=1024, N=160 k=1024 f=160-223

112 3TDEA L=2048, N=224 k=2048 f=224-255

128 AES-128 L=3072, N=256 k=3072 f=256-383

192 AES-192 L=7680, N=384 k=7680 f=384-511

256 AES-256 L=15360, N=512 k=15360 f=512+

Security Strength
Digital Signatures and Other Applications

Requiring Collision Resistance
HMAC, KMAC, Key Derivation Functions, Random

Bit Generation

≤80 SHA-1

112 SHA-224, SHA-512/224, SHA3-224

128 SHA-256, SHA-512/256, SHA3-256 SHA-1, KMAC128

192 SHA-384, SHA3-384 SHA-224, SHA-512/224, SHA3-224

≥256 SHA-512, SHA3-512
SHA-256, SHA-512/256, SHA-384, SHA-512, SHA3-

256, SHA3-384, SHA3-512, KMAC256

√

√

x

x
2031

√

√

x

x

2031

NIST SP 800-57

Classification

• the cryptographic algorithms which are with less than 112 bits security strength

• the cryptographic algorithms which have been broken into “insecure” cryptographic algorithms.

• the cryptographic algorithms which are disclosed to be vulnerable under specific scenarios

Insecure cryptographic algorithms

• the cryptographic algorithms with 112 bits security strength

• the cryptographic algorithms without secure vulnerability currently
(they are currently considered to be secure through 2030, alternative algorithms which are more robust (e.g., ≥ 128

bits security strength) are commonly available.)

Acceptable but not recommended cryptographic algorithms

• the cryptographic algorithms which are with ≥ 128 bits security strength

• the cryptographic algorithms without secure vulnerability currently

Recommended cryptographic algorithms

Security strength: a number associated with the number of operations that is required to break a cryptographic algorithm or system.

Categorize All The Cryptographic Algorithms
(NIST SP 800-57)

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Classification

Algorithm Classification

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Algorithm Classification Type Algorithm Name

Symmetric-Key
Algorithm

Insecure DES, 2TDEA, Blowfish, CAST5, TEA, XTEA, RC4

Acceptable but not recommended 3TDEA, Twofish, Salsa20

Recommended AES-128, AES-192, AES-256, ChaCha20-Poly1305

Asymmetric-Key
Algorithm

Insecure RSA-512, RSA-1024, DSA-1024

Acceptable but not recommended RSA-2048, DSA-2048, ECDSA-P224

Recommended
RSA-3072, DSA-3072, ECDSA-P256, Ed25519, RSA-4096, RSA-7680, RSA-15360,
ECDSA-P384, ECDSA-P521

Hash Function

Insecure MD4, MD5, SHA-1, RIPEMD-160

Acceptable but not recommended SHA-224, SHA-512/224, SHA3-224

Recommended
SHA-256, SHA-512/256, SHA3-256, SHAKE-128, BLAKE2s, SHA-384, SHA3-384, SHA-
512, SHA3-512, SHAKE-256, BLAKE2b

MAC Algorithm
Acceptable but not recommended HMAC-MD5

Recommended HMAC-SHA-1, Hash Functions (security strength ≥ 112 bits) based HMAC

Cryptographic RulesDerive 12 Cryptographic Rules

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

ID Rule Description

R-01 Do not use insecure cryptographic algorithms

R-02 Should use recommended algorithms preferentially

R-03 Do not use cryptographically insecure PRNG

R-04 Do not use predictable/constant cryptographic keys

R-05 Do not use the same password or salt for key derivation

R-06 IVs should be unique in CTR, OFB, GCM and XTS mode, and should be random in CBC and CFB mode

R-07 Do not use the padding PKCS#1-v1.5 for RSA

R-08 Do not use HTTP URL connections

R-09 Do not use weak SSL/TLS protocols

R-10 Do not use insecure cipher suites in SSL/TLS

R-11 Do not verify certificates or host names in SSL/TLS in trivial ways

R-12 Do not use insecure implementations deprecated by the official Go cryptographic library

Talk Outline

How does it

work?

How to classify

cryptographic

algorithm and

derive detection

rules?

Why did we start

this work?

Conclusions and

reflections

How is the

performance?

M o t i v a t i o n C o n c l u s i o nC r y p t o G o D e s i g nR u l e s E v a l u a t i o n

perform both backward and forward taint analysis

Taint Analysis

the well-targeted defined cryptographic rules →

Taint Analyzer Construct

the input Go project program file →

Convert to Intermediate Representation

Design

The Analysis Procedure

a static single-assignment (SSA) form

intermediate representation (IR)

five kinds of taint analyzers

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

• A source function produces an untrusted input

• A sink function consumes an untrusted input sending it to a sensitive destination

• A propagator is a function that propagates the untrusted data from one point of the program (via a

variable) to another

• A filter is a function that purifies an untrusted variable and makes it trustworthy

• A practical method of information flow analysis technology.

• Four types : sources, propagators, sanitizers/filters and sinks.

Taint Analyzer

Taint Analysis

Taint Analysis

propagators

tainted

untainted

misusesources sinks

sanitizers/filters

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Taint Analyzer Construction

Pattern Matching

R-01 & R-02: Cryptographic Algorithms

R-07: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑃𝐾𝐶𝑆1𝑣15; 𝑆𝑖𝑔𝑛𝑃𝐾𝐶𝑆1𝑣15

R-12: 𝑐𝑢𝑟𝑣𝑒25519.𝑆𝑐𝑎𝑙𝑎𝑟𝑀𝑢𝑙𝑡; 𝑏𝑛256; 𝑝𝑘𝑐𝑠12

Insecure API Invocation Identification01

Design

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

which is triggered
several insecure APIsThe converted IR (SSA form) report the misuses/alerts

Design

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Backward Taint Tracking

(sink to source)

R-01 & R-02: Cryptographic Algorithms

Key Length Tracking02

backward taint analysis

Is the key

length low?

several insecure APIs

(sink--tainted)

lowstrong
report the misuses/alerts

(source)

filter

(untainted)

Design

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

backward taint analysis

Is the independent
cryptographic
primitive low?

several insecure APIs

(sink--tainted)

lowstrong
report the misuses/alerts

(source)

filter

(untainted)
Backward Taint Tracking

(sink to source)

R-01 & R-02: Cryptographic Algorithms

R-08: HTTP

Function Nesting Tracking03

ℎ := ℎ𝑚𝑎𝑐.𝑁𝑒𝑤(𝑚𝑑5.𝑁𝑒𝑤, []𝑏𝑦𝑡𝑒 (𝑘𝑒𝑦))

• the operation mode of block cipher (e.g., CBC, GCM);
• the adopted elliptic curve of ECDSA (e.g., P224, P256);
• the option of hash algorithm in HMAC (e.g., SHA-1, SHA-256).

Design

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

backward taint analysis

Does the

filter exist?

several insecure APIs

(sink--tainted)

not existexist
report the misuses/alerts

(source)

filter

(untainted)

Backward Taint Tracking

(sink to source)

R-03: Cryptographically Insecure PRNG

R-04: Predictable/constant Cryptographic Keys

R-05: Same Password or Salt

R-06: Predictable/constant IVs

Randomness Tracking04

filter does not exist

filter exists

Design

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Forward Taint Tracking

(source to sink)

R-09: Weak SSL/TLS Protocols

R-10: Insecure Cipher Suites in SSL/TLS

R-11: Skip Certificate or Hostname Verification in

SSL/TLS

SSL/TLS Tracking05

backward taint analysis

Is the SSL/TLS

configuration correct?

several insecure APIs

(source--tainted)

wrongcorrect
report the misuses/alerts

(sink)

filter

(untainted)

Talk Outline

How does it

work?

How to classify

cryptographic

algorithm and

derive detection

rules?

Why did we start

this work?

Conclusions and

reflections

How is the

performance?

M o t i v a t i o n C o n c l u s i o nC r y p t o G o D e s i g nR u l e s E v a l u a t i o n

• Around 2,236 lines of Go code to realize the construction of our taint analyzers

• Dataset from GitHub:

• Sort by the most number of stars

• Crawled 120 open source Go projects in total.

• The average stars and forks are 5.9k and 562.62, respectively.

• The maximum, minimum and average Line of Code (LoC) are around 1,128k, 0.2k and 152.04k,

respectively.

• PC: Intel Xeon(R) E5-2682 v4 (2.50GHz CPU and 4GB RAM.)

• The average runtime: 86.27 milliseconds per thousand LoC.

Implementation and Experimental Setup

Implementation

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

• There are a total of 622 alerts for the 120 Go projects.

• Out of the 120 projects:

• 100 projects (83.33%) have at least one cryptographic misuse

• 73 projects (60.83%) have at least two misuses

• 47 projects (39.17%) have at least three misuse

• Our careful manual source-code analysis confirms that 594 alerts are true positives, resulting in the

accuracy as 95.50%.

• The 28 false positive cases are due to the path insensitivity, and the invocation of APIs from non-official

Go cryptographic libraries

Security Findings

Evaluation

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Evaluation

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Misuse case Number of misuses

1 Insecure PRNG 0

2 Predictable key in AES 75

3 Reuse salt in HKDF 8

4 Reuse salt in PBKDF2 18

5 Reuse salt in scrypt 19

6 Not unique IV in CTR 42

7 Not random IV in CBC 31

8 Not random IV in CFB 5

Total 198

Misuse case Number of misuses

1 TLS1.0 2

2 Insecure cipher suites 5

3 Accept any certificate or host name 34

4 HTTP URL 115

Total 156

Limitation

Limitations

• CryptoGo may incur false negatives in the case of invocation of API from non-official Go cryptographic

libraries (e.g., third-party cryptographic library or non-standard self-implemented cryptographic

algorithms).

• The path insensitivity confuse the CryptoGo’s taint analyzers, which produces false positives.

• CryptoGo can only be done on a single application, and cannot perform inter-application analysis.

• CryptoGo can only cover the data stored in program files.

Disclosures

• Contacted 100 developers of the projects with cryptographic misuses/alerts and received email responses

from 26 developers.

• 94 issues from 20 projects have been acknowledged and 33 issues from 6 projects have been declared as

non-issue.

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Talk Outline

How does it

work?

How to classify

cryptographic

algorithm and

derive detection

rules?

Why did we start

this work?

Conclusions and

reflections

How is the

performance?

M o t i v a t i o n C o n c l u s i o nC r y p t o G o D e s i g nR u l e s E v a l u a t i o n

Conclusion

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

• Introduce a static analysis tool CryptoGo, for detecting cryptographic API misuse in Go cryptographic

projects.

• CryptoGo leverages static taint analysis technique, along with 12 cryptographic rules strongly coupled

with Go cryptographic APIs and 5 kinds of specific taint analyzers.

• Implemented CryptoGo and carried out experiments based on 120 real-world Go cryptographic

projects. CryptoGo identified 622 cryptographic API alerts (with an accuracy of 95.5%) and found that

83.33% of the Go cryptographic projects have at least one cryptographic misuse.

THANK YOU FOR WATCHING

Q & A

liwenqing@iie.ac.cn

