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Background
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What is cryptographic misuse?

• Incorrect implementations of cryptographic

algorithms/protocols seriously jeopardize

system security in practice.

• Cryptographic Misuse: The above

erroneous implementations.

Cryptographic Misuse
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API

API API

API

Cryptography can be used to offer basic security services (e.g., confidentiality, integrity, 
authenticity), thus constitutes the cornerstone of secure systems.

• Developers without cryptography knowledge

• Misusing various cryptographic APIs

• Reduce the security of cryptographic projects



Background
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Issues

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

Are the cryptographic library APIs really secure?

Will developers really be able to make these cryptographic APIs work?

overly complicated poorly documented

lack cryptography experience



CryptoGo

In-depth analysis of the latest official Go cryptographic library (v1.18.3) 

↓

Tease out all the provided cryptographic algorithms

↓

Put forward an algorithm classification method based on security strength and security vulnerability

↓

Derive 12 cryptographic rules

↓

Leverages static taint analysis technique

↓

Takes a Go project program file as input and outputs a cryptographic misuse analysis report

the Go standard library (i.e.,  crypto/...) and the supplemental repositories (i.e., golang.org/x/crypto/...)

Overview

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

1) Classify the cryptographic algorithms and 

derive the corresponding rules.

2) Develop a tool to detect cryptographic 

misuse issues in Go projects.

the two key insights

Cryptographic API misuses within the Go landscape are still uncovered.
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Classification
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Security Strength Symmetric Key Algorithms FFC (DSA, DH, MQV) IFC* (RSA) ECC* (ECDSA, EdDSA, DH, MQV)

≤80 2TDEA L=1024, N=160 k=1024 f=160-223

112 3TDEA L=2048, N=224 k=2048 f=224-255

128 AES-128 L=3072, N=256 k=3072 f=256-383

192 AES-192 L=7680, N=384 k=7680 f=384-511

256 AES-256 L=15360, N=512 k=15360 f=512+

Security Strength
Digital Signatures and Other Applications 

Requiring Collision Resistance
HMAC, KMAC, Key Derivation Functions, Random 

Bit Generation

≤80 SHA-1

112 SHA-224, SHA-512/224, SHA3-224

128 SHA-256, SHA-512/256, SHA3-256 SHA-1, KMAC128

192 SHA-384, SHA3-384 SHA-224, SHA-512/224, SHA3-224

≥256 SHA-512, SHA3-512
SHA-256, SHA-512/256, SHA-384, SHA-512, SHA3-

256, SHA3-384, SHA3-512, KMAC256 

√

√

x

x
2031

√

√

x

x

2031

NIST SP 800-57 



Classification

• the cryptographic algorithms which are with less than 112 bits security strength

• the cryptographic algorithms which have been broken into “insecure” cryptographic algorithms.

• the cryptographic algorithms which are disclosed to be vulnerable under specific scenarios

Insecure cryptographic algorithms

• the cryptographic algorithms with 112 bits security strength

• the cryptographic algorithms without secure vulnerability currently
(they are currently considered to be secure through 2030, alternative algorithms which are more robust (e.g., ≥ 128

bits security strength) are commonly available.)

Acceptable but not recommended cryptographic algorithms

• the cryptographic algorithms which are with ≥ 128 bits security strength

• the cryptographic algorithms without secure vulnerability currently

Recommended cryptographic algorithms

Security strength: a number associated with the number of operations that is required to break a cryptographic algorithm or system. 

Categorize All The Cryptographic Algorithms
(NIST SP 800-57)

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n



Classification

Algorithm Classification 
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Algorithm Classification Type Algorithm Name

Symmetric-Key 
Algorithm

Insecure DES, 2TDEA, Blowfish, CAST5, TEA, XTEA, RC4 

Acceptable but not recommended 3TDEA, Twofish, Salsa20 

Recommended AES-128, AES-192, AES-256, ChaCha20-Poly1305

Asymmetric-Key 
Algorithm

Insecure RSA-512, RSA-1024, DSA-1024

Acceptable but not recommended RSA-2048, DSA-2048, ECDSA-P224

Recommended
RSA-3072, DSA-3072, ECDSA-P256, Ed25519, RSA-4096, RSA-7680, RSA-15360, 
ECDSA-P384, ECDSA-P521

Hash Function

Insecure MD4, MD5, SHA-1, RIPEMD-160

Acceptable but not recommended SHA-224, SHA-512/224, SHA3-224

Recommended
SHA-256, SHA-512/256, SHA3-256, SHAKE-128, BLAKE2s, SHA-384, SHA3-384, SHA-
512, SHA3-512, SHAKE-256, BLAKE2b

MAC Algorithm
Acceptable but not recommended HMAC-MD5

Recommended HMAC-SHA-1, Hash Functions (security strength ≥ 112 bits) based HMAC



Cryptographic RulesDerive 12 Cryptographic Rules

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

ID Rule Description

R-01 Do not use insecure cryptographic algorithms

R-02 Should use recommended algorithms preferentially 

R-03 Do not use cryptographically insecure PRNG 

R-04 Do not use predictable/constant cryptographic keys

R-05 Do not use the same password or salt for key derivation

R-06 IVs should be unique in CTR, OFB, GCM and XTS mode, and should be random in CBC and CFB mode

R-07 Do not use the padding PKCS#1-v1.5 for RSA

R-08 Do not use HTTP URL connections

R-09 Do not use weak SSL/TLS protocols

R-10 Do not use insecure cipher suites in SSL/TLS

R-11 Do not verify certificates or host names in SSL/TLS in trivial ways 

R-12 Do not use insecure implementations deprecated by the official Go cryptographic library
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perform both backward and forward taint analysis

Taint Analysis

the well-targeted defined cryptographic rules →

Taint Analyzer Construct

the input Go project program file →

Convert to Intermediate Representation

Design

The Analysis Procedure 

a static single-assignment (SSA) form

intermediate representation (IR)

five kinds of taint analyzers

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n



• A source function produces an untrusted input

• A sink function consumes an untrusted input sending it to a sensitive destination

• A propagator is a function that propagates the untrusted data from one point of the program (via a

variable) to another

• A filter is a function that purifies an untrusted variable and makes it trustworthy

• A practical method of information flow analysis technology.

• Four types : sources, propagators, sanitizers/filters and sinks.

Taint Analyzer

Taint Analysis

Taint Analysis

propagators

tainted

untainted

misusesources sinks

sanitizers/filters

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n



Taint Analyzer Construction

Pattern Matching

R-01 & R-02: Cryptographic Algorithms

R-07: 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑃𝐾𝐶𝑆1𝑣15; 𝑆𝑖𝑔𝑛𝑃𝐾𝐶𝑆1𝑣15

R-12: 𝑐𝑢𝑟𝑣𝑒25519.𝑆𝑐𝑎𝑙𝑎𝑟𝑀𝑢𝑙𝑡; 𝑏𝑛256; 𝑝𝑘𝑐𝑠12

Insecure API Invocation Identification01

Design

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n

which is triggered
several insecure APIsThe converted IR (SSA form) report the misuses/alerts
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Backward Taint Tracking

(sink to source)

R-01 & R-02: Cryptographic Algorithms

Key Length Tracking02

backward taint analysis

Is the key

length low?

several insecure APIs

(sink--tainted)

lowstrong
report the misuses/alerts

(source)

filter

(untainted)



Design
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backward taint analysis

Is the independent 
cryptographic 
primitive low?

several insecure APIs

(sink--tainted)

lowstrong
report the misuses/alerts

(source)

filter

(untainted)
Backward Taint Tracking

(sink to source)

R-01 & R-02: Cryptographic Algorithms

R-08: HTTP

Function Nesting Tracking03

ℎ := ℎ𝑚𝑎𝑐.𝑁𝑒𝑤(𝑚𝑑5.𝑁𝑒𝑤, []𝑏𝑦𝑡𝑒 (𝑘𝑒𝑦))

• the operation mode of block cipher (e.g., CBC, GCM); 
• the adopted elliptic curve of ECDSA (e.g., P224, P256);
• the option of hash algorithm in HMAC (e.g., SHA-1, SHA-256).
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backward taint analysis

Does the

filter exist?

several insecure APIs

(sink--tainted)

not existexist
report the misuses/alerts

(source)

filter

(untainted)

Backward Taint Tracking

(sink to source)

R-03: Cryptographically Insecure PRNG

R-04: Predictable/constant Cryptographic Keys

R-05: Same Password or Salt

R-06: Predictable/constant IVs

Randomness Tracking04

filter does not exist

filter exists
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Forward Taint Tracking

(source to sink)

R-09: Weak SSL/TLS Protocols

R-10: Insecure Cipher Suites in SSL/TLS

R-11: Skip Certificate or Hostname Verification in

SSL/TLS

SSL/TLS Tracking05

backward taint analysis

Is the SSL/TLS 

configuration correct?

several insecure APIs

(source--tainted)

wrongcorrect
report the misuses/alerts

(sink)

filter

(untainted)
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• Around 2,236 lines of Go code to realize the construction of our taint analyzers

• Dataset from GitHub:

• Sort by the most number of stars

• Crawled 120 open source Go projects in total.

• The average stars and forks are 5.9k and 562.62, respectively. 

• The maximum, minimum and average Line of Code (LoC) are around 1,128k, 0.2k and 152.04k, 

respectively. 

• PC: Intel Xeon(R) E5-2682 v4 (2.50GHz CPU and 4GB RAM.)

• The average runtime: 86.27 milliseconds per thousand LoC.

Implementation and Experimental Setup

Implementation

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n



• There are a total of 622 alerts for the 120 Go projects.

• Out of the 120 projects: 

• 100 projects (83.33%) have at least one cryptographic misuse

• 73 projects (60.83%) have at least two misuses

• 47 projects (39.17%) have at least three misuse 

• Our careful manual source-code analysis confirms that 594 alerts are true positives, resulting in the 

accuracy as 95.50%. 

• The 28 false positive cases are due to the path insensitivity, and the invocation of APIs from non-official 

Go cryptographic libraries

Security Findings

Evaluation

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n



Evaluation
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Misuse case Number of misuses

1 Insecure PRNG 0

2 Predictable key in AES 75

3 Reuse salt in HKDF 8

4 Reuse salt in PBKDF2 18

5 Reuse salt in scrypt 19

6 Not unique IV in CTR 42

7 Not random IV in CBC 31

8 Not random IV in CFB 5

Total 198

Misuse case Number of misuses

1 TLS1.0 2

2 Insecure cipher suites 5

3 Accept any certificate or host name 34

4 HTTP URL 115

Total 156



Limitation

Limitations

• CryptoGo may incur false negatives in the case of invocation of API from non-official Go cryptographic 

libraries (e.g., third-party cryptographic library or non-standard self-implemented cryptographic 

algorithms). 

• The path insensitivity confuse the CryptoGo’s taint analyzers, which produces false positives. 

• CryptoGo can only be done on a single application, and cannot perform inter-application analysis. 

• CryptoGo can only cover the data stored in program files. 

Disclosures

• Contacted 100 developers of the projects with cryptographic misuses/alerts and received email responses 

from 26 developers.

• 94 issues from 20 projects have been acknowledged and 33 issues from 6 projects have been declared as 

non-issue.

C r y p t o G o D e s i g nR u l e sM o t i v a t i o n C o n c l u s i o nE v a l u a t i o n
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Conclusion
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• Introduce a static analysis tool CryptoGo, for detecting cryptographic API misuse in Go cryptographic 

projects.

• CryptoGo leverages static taint analysis technique, along with 12 cryptographic rules strongly coupled 

with Go cryptographic APIs and 5 kinds of specific taint analyzers. 

• Implemented CryptoGo and carried out experiments based on 120 real-world Go cryptographic 

projects. CryptoGo identified 622 cryptographic API alerts (with an accuracy of 95.5%) and found that 

83.33% of the Go cryptographic projects have at least one cryptographic misuse.
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