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GPS Trajectory
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Map-Matched T

Map-matching

Minimizes trajectory error
Ordered set of road links
Reflects exact travel path
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Prior Works on Trajectory Privacy

Prior works attempt to provide private trajectories through generative models

e Human mobility modeling
e Prefix-tree
e Generative adversarial networks

Other methods are

Noise injection to locations
Location swapping
Dumppy location injection
Trajectory reconstruction



Our Goal

This paper attempts to protect the privacy of every individual trajectory
regardless of the rest of the data

e masking origin and destinations (OD) with adaptive noise injection
e randomizing travel paths with exponential selection.

Differentially Private Map-Matching (DPMM)

e Preserves high utility in protected trajectories
e Prevents geospatial mismatches
e Keeps the trajectories in reasonable path



Differential Privacy

Differential Privacy statistically guarantees the privacy of individual user trajectories independent of the
background knowledge and other samples.
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Differentially Private Map-Matching
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Trajectory Simplification
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Ramer-Douglas—Peucker (RDP)

Represent the sequence of location with waypoints

e retain the movement characteristics
e enhances the path quality
e decreases the computational complexity




Private Origin-Destinations

Construct
— Trajectories Construct
with paths
: rivatel
GPS trajectories ¥ Waypoints = i
I e
Perturb Find
origin, candidate Noisy link
destination nodes from trajectories X
Raw link GPS points D(E,V)
trajectories A




Private Origin-Destinations

e Origin-destinations have the highest privacy concern
e 2D Planar Laplace noise added to the OD GPS points
adaptively
e Planar Laplace Noise has two parameters
o Epsilon (€)
o Range (r)
e Road link network density specifies the Radius
o  Number of road links in cloaking region
e Output is noisy a GPS point
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Candidate Nodes
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Candidate Nodes

e Retrieve candidate nodes from the road network for _ sk Shepherd
the noisy OD GPS points and waypoints | alk
o with the same cloaking region approach
e For OD GPS points Gom j
o  Consider functional class information from clean ", " o N\
link trajectory . 000
e Link functional class defines the type of the road that
trajectory travels i "
o Increase the similarity of the noisy and original LT
link trajectories

Range=0.5*R



Private Paths
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Private Paths and Trajectory Construction

A* path selection algorithm

¢ Find candidate paths between the nodes
* Combines Dijkstra shortest path algorithm with greedy search

Exponential DP mechanism

* Randomly selects a path from candidate paths

Connect sequence of candidate paths

¢ Form the full trajectory

Trajectory Postprocessing

* Remove the travel loops
¢ Retains the DP guarantee




Attack Resilience of DPMM

Outlier Leakage on Trajectory ODs:

e ODs are sensitive that reveal user identity
e Rural areas are more unique than central areas
e Adaptively noise injection protects against outlier leakage



Attack Resilience of DPMM

Outlier Leakage on Trajectory ODs:

e ODs are sensitive that reveal user identity
e Rural areas are more unique than central areas
e Adaptively noise injection protects against outlier leakage

Partial Sniffing on Travel Paths:

Match the rest of the trajectory with trajectory dataset
Private path construction creates randomized paths
Adversary cannot make correct inferences about user

i W Sniff Region
Adversary learns partial trajectory ﬁw%
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Experiment Setup

833 real fleet and consumer trajectories in San Francisco collected from different
location-sharing apps and GPS devices.

Compared with different variants of Utility Metrics
DPMM and 2 external studies

Vehicle miles traveled
Road link count densities

DPT (Ha et al., VLDB 2015)
AdaTrace (Gursoy et al., CCS 2018)

e Privatized OD link ratio
DPMM-No-WP e Trip length change
DPMM-A*-WP e Query error of spatial density
DPMM-D-WP e OD similarity

o
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Experimental Results
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Figure 4: Comparison of different € values and the change of OD-links (a) DPMM vs original link trajectories (b) DPMM vs GPS trajectories

for different for 1 hour period of trajectories between 1pm and 2pm. Figure 5: Performance of DPMM is compared with the different e values with respect to original link and GPS trajectories.



Experimental Results

== Raw data

w—— Raw data = Raw data
—_— =1 —_— = £=1
60 4 60 1 1 60
50 4 501 50
404 401 40
> > >
3 > 3
= = c
] o )
- = Z30
I 2301 |
] 30 4 30 @
& & &
201 204 204
101 104 1014
01 01 01
0 2000 4000 6000 8000 10000 12000 "o 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000
Links Links Links
(a) DPMM (b) AdaTrace (c) DPT

Figure 7: Link count densities on aggregated network level for DPMM with baseline comparisons using € = 1



Experimental Results

Table 1: Comparison of the aggregated utility metrics with benchmark
studies for € = 1. The lower value is the better for Querry Error and OD
Similarity metrics. For VMT Error, value closer to zero is better. The bold and
green results show the best performance and the second best performance,

respectively.
DPMM | AdaTrace | DPT
Query Error 0.146 0.353
OD Similarity | 0.065 0.081
VMT Change | —0.072 —-0.641

(a) AdaTrace (b) DPT

(c) Original Trajectories

Figure 8: Visual representation of the original trajectories vs privacy
preserved trajectory densities for benchmark models. Proposed DPMM does
not produce GPS trajectories, hence, it does not have visual comparison
with benchmarks.



Conclusion

e DPMM is a new trajectory privacy method with higher utility
o OD privacy with noise injection DP mechanism
o Path privacy with exponential DP mechanism
Do not rely on the other samples in the dataset
Minimizes the trajectory mismatches with geospatial reality
Quantified at individual and aggregated utility metrics
Superior against the all compared baselines
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Planer Laplace noise model

e Sample a GPS point from planer laplace distribution with two
parameters

o Epsilon (¢) adjusts the noise level i | o

o Range (r) determines the center of the laplace noise |

e Moving direction is selected randomly in angular
form between [0 and 2n]
. . . Figure 2: The pdf of two planar Laplacians, centered at
e While (¢) is the input parameter, the range value (r) (=2, —4) and at (5, 3) respectively, with ¢ = 1/5.
is adaptivity parameter selected by the model

e (¢) defines the tightness of Laplace distribution, smaller epsilon moves more links



