

Compressed Federated Learning Based on Adaptive Local Differential Privacy

Yinbin Miao¹, Rongpeng Xie¹, Xinghua Li¹, Ximeng Liu², Zhuo Ma¹,

and Robert H.Deng³

¹Xidian University, China; ²Fuzhou University, China; ³Singapore Management University, Singapore

Annual Computer Security Applications Conference

Federated Learning

FEDERATED LEARNING

ACSAC 2022 December 5-9, 2022 • Austin, Texas, USA

- Step-I : Server distributes global model
- Step-II : Clients train local models

■ Step-III : Clients upload local models and server aggregates the results

Privacy disclosure of clients' training data due to plaintext model parameters or gradients

Privacy disclosure of clients' training data due to plaintext model parameters

■ The Curse of Dimensionality of DNN

Local Differential Privacy (LDP)

Let \mathcal{M} be a randomized perturbation mechanism, for any pair input x and z in \mathcal{D} and any

output Y of \mathcal{M} , \mathcal{M} satisfies ε -LDP such that

$$Pr[\mathcal{M}(x) = Y] \le e^{\varepsilon} \cdot Pr[\mathcal{M}(z) = Y],$$

where \mathcal{D} is a dataset and ε is the privacy budget of \mathcal{M} .

ACSAC 2022 December 5-9, 2022 • Austin, Texas, USA

Compressive Sensing (CS)

Technical Overview :

■ Local Compressive Sensing:

Algorithm 2 : Local Compressive Sensing

Input: the trained local model \mathbf{w}_t^k ; the total layers *L*; a certain layer *l*; compression ratio *CR* Client_k(\mathbf{w}_t^k):

1: $\mathbf{c}_t^k = \mathbf{w}_t^k$

2: for each $l \in L$ in \mathbf{c}_t^k do

3: $n_l = \operatorname{len}(\mathbf{c}_{t,l}^k) //$ the number of weights for this layer

- $4: \quad m_l = n_l \times CR$
- 5: $\mathbf{c}_{t,l}^k = C(\mathbf{c}_{t,l}^k, m_l) // \text{ including DCT and interception}$
- 6: end for
- 7: Return: \mathbf{c}_t^k

• The weight ranges $[c_l - r_l, c_l + r_l]$ of different layers $l \in [1, L]$ are different, where

 c_l is the range center and r_l is the range radius.

Adaptive Local Differential Privacy:

Adaptive Local Differential Privacy:

$$\mathcal{M}(w) = w^* = \begin{cases} c_l + \mu \cdot \frac{e^{\varepsilon} + 1}{e^{\varepsilon} - 1}, & \text{with probability} & \frac{e^{\varepsilon} - 1}{2e^{\varepsilon}} \\ c_l + \mu \cdot \frac{e^{\varepsilon} - 1}{e^{\varepsilon} + 1}, & \text{with probability} & \frac{e^{\varepsilon} + 1}{2e^{\varepsilon}} \end{cases}$$

SETUP:

- Datasets: MNIST, Fashion-MNIST
- Model: CNN(2 convolutional layers + 1 fully connected layer)
- Super-parameters:

Epochs E	50/100/200		
Number of clients	10		
Learning rate	0.1		
Compression Ratio (CR)	1/0.5/0.1/0.05		
Privacy budget	+∞/1/2		

• Runtime environment: Pytorch 1.10.0, Numpy 1.21.5, a single CPU @ 3.30 GHz,

16.0GB RAM

Analysis of Adaptive Perturbation:

■ Analysis of Adaptive Perturbation:

Fig. 3. Apply μ in MNIST

Analysis of Adaptive Perturbation:

Fig. 4. Apply μ in Fashion-MNIST

Analysis of Compression Ratio:

Fig. 6. Fashion-MNIST

■ Traffic and Running Time:

Privacy budget ε		$\varepsilon = +\infty$		$\boldsymbol{\varepsilon} = 1$		
Metrics		Traffic(MB)	Runtime(mins)	Traffic(MB)	Runtime(mins)	
Dataset		MNIST				
CR	1	12.69	13.76	12.69($\epsilon = 2$)	14.45($\epsilon = 2$)	
	0.5	6.35	16.79	6.35	24.80	
	0.1	1.27	52.26	1.27	53.66	
	0.05	0.63	72.84	0.63	105.27	
Dataset		Fashion-MNIST				
CR	1	12.69	27.93	12.69($\epsilon = 2$)	28.37(ϵ = 2)	
	0.5	6.35	33.55	6.35	33.52	
	0.1	1.27	70.35	1.27	90.16	
	0.05	0.63	72.51	0.63	130.12	

- We use the compressive sensing to compress the local model, which reduces not only the size of the model but also the amount of noises
- We apply adaptive Local Differential Privacy to add controllable noises for protecting data privacy and ensuring high model performance
- Our experiments demonstrate that our scheme improves the accuracy of the model with lower privacy budget, and reduces the communication overhead by 95% at most

ACSAC 2022 December 5-9, 2022 • Austin, Texas, USA

Thank you! Q&A

Annual Computer Security Applications Conference (ACSAC) 2022