. MProbe: Make the code
“\probing meaningless

!
:
‘i Presenter: YongGang Li
: Authors: YongGang Li, Ye-ching Chung,

‘T-", JinBiao Xing, Yu Bao, GuoYuan Lin
/ Affiliation: The China University of Mining and

f zﬁ

574 Technology

CONTENTS
‘\\ @ How does code probing works?

How does MProbe defend against

!
:
_i code probing?

MProbe?

7 @ Conclusion

What is the effect and efficiency of
/@ ’

2

01

PART

. How does code probing

works?

~ How does code probing works?

r e N

» Vector 1: arbitrary read. ool il | | Godk
. P arca arca arca
Variants of heart bleed The data pointer blglé)agsaesgf gi‘égle
) 6658 i 7 handling code
JIT-ROP controlled. SIGSEGV
> Vector 2: arbitrary jump. Read eode recursively

(N N/ N/
P1 P2 P3 P4

BROP—BIlind ROP

jmp P1 call P2 call P3 lea offset(rip) rdi

» Vector 3: Side-channel Probing.

Analyze the TLB hit and miss.

» Vector 4. Data leakage.

DOP—read the PLT and GOT where store the code addresses

How does MProbe defend
against code probing?

The main idea of MProbe is to make the

_I ‘How does MPrObe WOI'kS? probed code lose its execution

- _ permission in the original address space.
probing attacker

/\j\ Why the

~#& probed code
cannot be
executed

probing
activity

permission

manager)

code

executable non-executable

'Wsiéfca'ift&”
engine
probe-wall 1§§iti acy probe-wall r;nr % actlz 1i(l)
legal legal call to the Judgment redirect executable sphace

execution probed code control flow
entity wo)———» CF transfer ———> code

to before code probing t after code probing

Figure 1: The overall architecture of MProbe

" 'How does MProbe works? srobing atacke
B /. Why the

bi & probed code
|0 cannot be
. activity executed?? . .o

® probe-wall

permission
manager

« Detect the probing activities. code

. . executable
® permission manager

code

— non-executable
security

engine
« Disable the execution permission of ey
the probed COde. legal legal call to the judgﬁ\‘ent redirect executable space
- Migrate the probed code to a random eculion, PIOL R transfer %% code
address space . . .
to before code probing t1 after code probing
® security engine
« Judge the legitimacy of the control flow , , o
1. perceive the code probing activities
2. prevent the probed code snippets
® CF transfer from being used as gadgets
. 3. ensure the probed code to be caIIed
« Redirect the control flow to the random space legally :

The buddy system is modified to create a

_‘ -IiHOW does MProbe works? memory pool, which is the source of code page

Y — allocation. Pages in this pool are pre-set as
& Perceive the pl’Obiﬂg attacks unreadable. Perceive Vector 1.

‘ EPT 2 ‘1‘1‘1‘ ‘ EPT 2 ‘0‘1‘1‘
memory map with all permissions memory map with readable and writable permissions
phySiCEll memory allocation for other ObjCCtS physica] memory allocation for user code
T st (T T T N
: zone zone - : : zone zone [2 :
| | | '
| I N I o — L I | I N o L L I
| I
I A |
' \
—— — — — — — I —— — — — — — I
| | | |
I I
I |
e S R | | \zone/ |\ R pedel—fpagel] R F ¥
T T T T T T T T T T T EEE T T T T T T T T T ~ llst T T T T T T T T T T T T EEE T T T T T T T T T ~
| zone zone list_1 : | zone zone list_3 :
- I | - I |
I I o I B ____IJ N I O I o B =
' |
I
I I
j EoEo — = = j EO . — = =
I I I I
| |
'\ —— page page ~ page page | '\ —— page page ~ page page |
g S / g S /
A memory map with all permissions memory map with only the executable permission
EPT_1 [1]1]1] | Lt [1]o]o]..

Figure 2. The overall design of user code memory
allocation

" How does MProbe works?

€ Perceive the probing attacks

* Perceive Vector 2 (arbitrary jump)
1. Capture SIGSEGV and SIGILL

2. Record the code triggers SIGSEGV and SIGILL
3. Identify the restated process.

* Perceive Vector 3 (side-channel probing)
1. Map the space at V+n*xGB (n<8, x=1 or 512)

2. Set the page tables of the space to be unreadable

" How does MProbe works?

€ Perceive the probing attacks

* Perceive Vector 4 (data leakage)
1. Set GOT to be unwritable
2. Store the library function address in a non-readable code snippet

3. Fill the code snippet’s starting into GOT

native GOT
secret code

LO
initial value w
2 LO:

mitial value

imp real address
it vale | jmp

real address non-readable

non-writable

Figure 3. Hide the function address in GOT

~ How does MProbe works?
@ Prevent the probed code is used as a gadget

* Vector 1 (arbitrary read)

1. When the Vector 1 is perceived, MProbe directly prevent the current
code reading.

* Vector 4 (side-channel probing)

1. When the Vector 2 is perceived, MProbe directly prevent the current
memory access.

" 'How does MProbe works?

".0 Prevent the probed code is used as a gadget

,,,,,,,,,,,,,,,,,,,

For the Vector 2 or Vector 3, the probed code block containing an ICT

pop 1si

call check box
call/ymp *rsi
jmp L3

1 r
transfer
call address 4|/:>
Ll:jmp L2 g
“int3 il| iz
S 17 @ |
3 |
L3: pop <
transfer
1o |

random space

Figure 4. Migrate a code block to a random space

instruction will be migrated to a new random space

— — — — — — — — —]

" How does MProbe works?

€ Prevent the probed code is used as a gadget

* Security strategies:

1.

2.

In the same mapped space, jmp * jumps to the inside of the current
function; call * can only jump to the head of other functions.

[f without going through PLT, call and jmp cannot transfer the control
flow to a library from application code, nor can transfer it to any other
libraries from the current library.

The jump targets of ICT instructions must conform to the code
alignment forms in the ELF file.

The return address of the instruction ret cannot be changed before ret
is executed.

" 'How does MProbe works?

‘@ Transfer the legal control flow.

S1: call/jmp D2

-

‘D4 nt3

L

,,,,,,,,,,,,,,,,,,,

D3 nt3

probed code block
@

rewrite

@

S2: call/jmp *reg

N_\

Figure 5. Transfer the legal control flow

call/yjmp R2

R1: mov rax rbx

R2:

R3: pop rsi

R4:

R5: call/jmp *rsi
jmp D5

migrated code block

S3: ret

Rewrite the probed code block
The control flow transferred to the rewritten code

no
check

From To Rand
S1 D2 R2
S2 D3 R3
S3 D4 R4
S4 D5 RS
S5 D6 R6
S6 D7 R7
S7 D8 RS8
S8 D9 R9
white list

in the real code space triggers a system trap

Check its legitimacy

What is the effect and
efficiency of MProbe?

' What is the effect and efficiency of MProbe?
2 o Security
e Arbitrary read:

1. The modified HeartBleed can be detected due to the captured SIGSEGV.

2. The code reading of memcpy(bp,pl,payload) in openssl can be detected

due to the unreadable code segment.

* Arbitrary jump:

1. Blind ROP can be detected due to the captured SIGSEGV or SIGILL.

4 " What is the effect and efficiency of MProbe?

€ Security

* side-channel probing:

1.

1.

The attacker cannot obtain the 30th~32nd bits and 39th~41st bits of
the virtual address.

The typical side-channel attacks such as flush+reload, EVICT+TIME and
PRIME+PROBE can also be detected and blocked by MProbe whenever
they read the code.

GOT leakage:

What the attackers obtain are not the real addresses of library
functions.

' What is the effect and efficiency of MProbe?
& Security

e Control flow detection

70 Vv

libcodeblocks.so 4267 535758

libcapstone.so 869 109538 3 v
15 1969 1 if

libnetpbm.so.10 60 7704 1 v
libwxsmithlib.so 1719 187992 48 i
400.peribench 877 100750 5 i
401.bzip2 45 3942 1 i
2285 254156 29 J

8 1079 if

.\/

471.omnetpp 401 56954 2

SN

What is the effect and efficiency of MProbe?

g 0 performance
* SpecCPU 2006

3000 B native B MProbe ——performance loss 15%

10%

2000
5%

1000

5 > 2P N © > s g
& v Q%&Q ¥ @ 6‘ » % Qﬁ & SV Nl S ~o(‘>Q ¢ oF Qé&' S ‘%@\% 6&&

RUNE S F K \ O & P & D &

SN R S PN IR AN $ PN R A RN S A S

SRR b,bc;?o FOMRANEE NN 6”‘ & X R &8 RS &
(\,)b' q D\Q @.

Figure 6. SpecCPU2006 test results.

ST

Lmbench

"_'f'What is the effect and efficiency of MProbe?

& performance

6%
3%
0%

wow puel
wowl urewt

1

']
LIMIIdW

peal wow
puey Adooq
oqr Adooq
pearar deww
PeaIdI (Y
do

XIun je
odid

199198 PIOOT
yney joxd
deww
S1913P JOT
91eAId N |
S1919pP 0
918310 ()
uuod doy
do

dpn

X1un je
odid
M79/d91
M91/d91
St9/d8
M91/d8
Mt9/dg
M91/dg
Mo/dz

oo01d ys
001d 99%9
001d 10§
[puy S1s
jsur S1s

doy 19[S
asojo/uado
1818

OI [[nu

[Te9 [[nu

20

mem

lantency

local communication
bandwidths

file lantency

lantency
Figure 7. Lmbench test results.

context switching communication
lantency

processor lantency

~ What is the effect and efficiency of MProbe?

& performance
* Probing test

m (0 probing ® 10% probing ® 30% probing = 60% probing ® 100% probing

30%
20%
10% || ‘
0% *® - I B - I - - I | | | | I [|
- > : 5 5
FFSFTE S F AT ST F T & P
Q7 N NS RadiE) AN %OQ Q ‘b\o QQ (,)\ (\Q T @6) Qn) q?)) oo‘::v\ o
B> N bf:;) . 0@0 e D M 2 bf) L N QQQ % bb %{\0
e bbo) : X N

Figure 8. MProbe's impact on the process after a probing attack.

Conclusion

' What is the effect and efficiency of MProbe?

€ Conclusion

(1) Propose a probing perception mechanism.

(2) Propose a protection mechanism to prevent the probed
code from being used as gadgets.

(3) Implement the MProbe prototype in Linux.

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24

