
MoLE: Mitigation of Side-channel 

Attacks against SGX via Dynamic Data 

Location Escape

Fan Lang1,2, Wei Wang1, Lingjia Meng1,2, Jingqiang Lin3, Qiongxiao Wang1, Linli Lu1

1 State Ley Laboratory of Information Security, Institute of Information Engineering, 
China Academy of Sciences, Beijing 100089, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 
100089, China

3 School of Cyber Security, University of Sciences and Technology of China, Hefei 
230027, Anhui, China



Abstract

Software Guard eXtension(SGX) is a set of 

instructions and mechanisms for memory 

accesses added to Intel architecture processors, 

which aim to provide integrity and confidentiality 

assurance.

Unfortunately, the security mechanism still 

has weakness, such as side-channel 

attacks(SCAs). 

Therefore, we propose MoLE, a dynamic 

data location randomization scheme to 

defend against SCAs and transient 

execution attacks that target sensitive data 

within enclaves. By continuously 

obfuscating the location of sensitive data at 

runtime, MoLE prevents the adversary from 

directly obtaining or disclosing data based 

on data access patterns. 



3

➢ SGX can provide applications trusted execution environments, 

called enclave

➢ Isolated from the OS by 

the hardware processor

➢ Encrypted using 

processor-specific keys

➢ Ensure the 

confidentiality and 

integrity of data and 
code in enclave

SGX（Software Guard Extensions）

➢ Vulnerable to SCA



4

➢ Characteristics of cache side-channel attacks

➢ No need to access the code or data in the isolated 

execution environment

➢ By analyzing the cache side-channel information to 

indirectly obtain the key information

➢ Such as, Prime + Probe

Cache SCA



5

➢ Characteristics of page table side-channel attacks

➢ No need to access the target pages

➢ By analyzing the page table side-channel information to 

indirectly obtain the key information

➢ Such as, 

Controlled-

Channel

Page Table SCA



6

➢ Characteristics of page table side-channel attacks

➢ Getting unauthorized access to the data with transient execution 

driven by fault or assist 

➢ Combining Flush + Reload Cache SCA

➢ Such as, Foreshadow

Meltdown-type Attack 



7

➢ Basic idea

➢ Constantly changing location of sensitive data at runtime to 
obfuscate the data access patterns

➢ Challenge

➢ How to achieve untraceable data obfuscation against 

privileged attackers with single-step capability?

➢ How to design a defense that is generalizable and relatively 

transparent to the target application?

Solution——MoLE



8

➢ TSX（Transactional Synchronization Extension）

➢ TSX is Intel’s implementation of hardware transactional 
memory (HTM)

➢ Operations within a transaction are atomic

➢ An interruption or exception causes a rollback

➢ XBEGIN, XEND, XABORT, and XTEST

➢ Support for multi-threading

➢ Resistant to single-step behavior

Technology



9

➢ Attackers have full control over the OS

➢ Generate interruptions to single-step the target application

➢ Block, replay, read, and modify all message outside enclaves

➢ Attackers have the ability to launch the following attacks

➢ Cache SCAs

➢ Page table SCAs

➢ Meltdown-type transient execution attacks

➢ Do not consider LLC SCAs

Threat Model



10

➢ MoLE defeats attacks by altering the sensitive data’s location 

dynamicly at runtime, which we call dynamic data location Escape. 

➢ Tunnels

➢ Escape function

➢ Embraced in a single transaction

MoLE



11

➢ A designated portion of the enclave heap to store the sensitive data

➢ A page list

➢ Several doubly-linked 

lists

➢ The Tunnels has 𝑙 (Each L1d cache set consists of 𝑙 cache lines) 

items in the page list

Tunnels



12

➢ Computing new addresses for data Escape

➢ Feint accesses

Escape Function



13

➢ Runtime Library

➢ Encapsulating the operations for the Tunnels and the Tunnels data

structure

Implementation



14

➢ LLVM Pass

➢ Instrumenting the application enclave code about the annotation 

variables at the intermediate representation (IR) level

Implementation



15

➢ Taint Tracking

➢ There may be taint 

propagation when 

accessing sensitive data 

by some instructions

➢ load

➢ call

Implementation



16

➢ Cache SCA

➢ Prime + Probe

➢ Escape evicts the preloaded data of various cache lines

➢ Page table SCA

➢ Escape would allow sensitive data to be located on any page in 

the Tunnels

➢ Meltdown-type attack

➢ Escape make it difficult to get the exact location of the data

➢ Single-step tracking

➢ TSX will roll operations within a transaction back to invalidate 

single-step tracking

Analysis



17

➢ Cache SCA

➢ As the access threshold 𝑇 decreases, the cache access pattern 

becomes chaotic

Evaluation



18

➢ Page table SCA

➢ With the Escape, the patterns of these two variables become 

confusing

Evaluation



19

➢ Meltdown-type attack

➢ Foreshadow

➢ The amount of stolen data decreases as the threshold 𝑇
decrease

Evaluation



20

➢ Nbench

➢ When 𝑇∈{4,8,16,32,64,128}, the overhead is 7.89×, 4.78×, 

3.14×, 2.29×, 1.89x, and 1.48×.

Evaluation



21

➢ Nbench

➢ Data size

➢ Multi-threading

Evaluation



22

➢ Limiting concurrency

➢ Usage restrictions (multi-threading)

➢ Obfuscation

➢ Weak for single-step tracking

➢ Limited defense range

Related Work



Thank you!

23


