

Make Data Reliable : An Explanation-powered Cleaning on Malware Dataset Against Backdoor Poisoning Attacks

Xutong Wang^{1,2}, Chaoge Liu^{1,2}, Xiaohui Hu³, Zhi Wang^{1,2}, Jie Yin¹, Xiang Cui⁴

- 1. Institute of Information Engineering, Chinese Academy of Sciences
- 2. School of Cyber Security, University of Chinese Academy of Sciences
- 3. School of Computer Science, Beijing University of Posts and Telecommunications
- 4. Zhongguancun Laboratory

PART 1	Introduction				
PART 2	Background				
PART 3	Threat Model				
PART 4	Motivation				
PART 5	MDR				
PART 6	Evaluation				

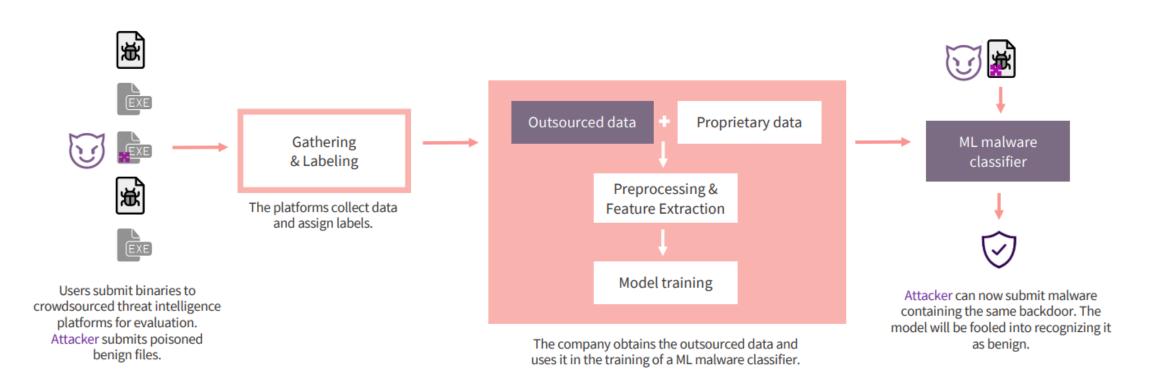
Introduction

- Machine Learning (ML) based malware classification has evolved significantly in recent decades.
- Training for malware classification often relies on crowdsourced threat feeds, and backdoor poisoning attacks have demonstrated their strong power.
- We propose MDR, a methodology to clean a given dataset and output a reliable dataset, thereby preventing the threat from backdoor poisoning attacks.

Background

- ML Malware Classification: It can be divided into two major categories, static analysis (pre-execution detection) and dynamic analysis (execution in virtual environment).
- Clean-label Attacks: Without changing the label of a sample, attackers poison the datasets by injecting watermark (or called backdoor, a specific combination of feature and value pairs), which will misguide the prediction result of the victim model at the inference time.
- SHAP: An explanation tool used to explain the predictions of a model. It provides the importance of each feature value to the decision made by the classifier.

Threat Model



Motivation

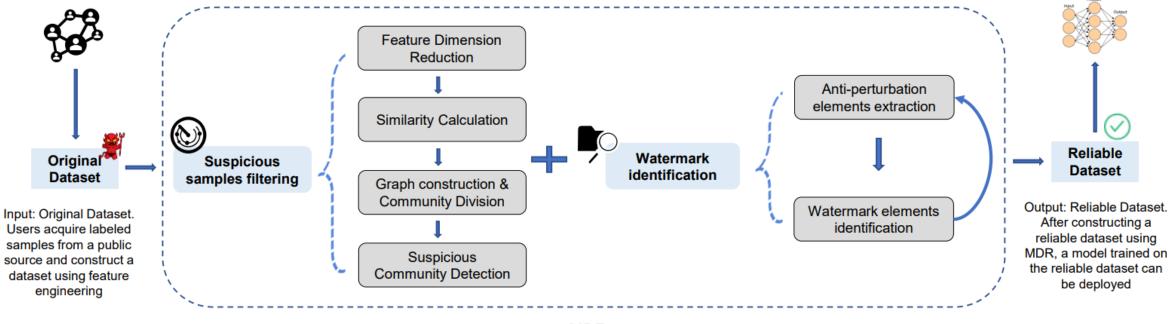
Limitations:

Model-level defense :

- Target at Computer Vision (CV).
- Focus on Deep Neural Network based classifiers only.
- Assume that attacker can actively tamper with the training label.

Input-level defense :

- Only evaluated defenses, and neither offers identification of watermarks.
- Performance are not good.



MDR

Suspicious Samples Filtering

Inspirations:

- Watermark is strongly goodware-oriented features and values, and there are more same goodware-oriented (feature, value) pairs among backdoored samples. The differences can be identified by focusing on the number of the same goodwareoriented (feature, value) pairs among samples.
- The differences between samples can be analyzed by clustering-like approaches.
- Watermark feature values are heavily oriented toward goodware, and they can resist the perturbation caused by malicious features. Therefore, After clustering, for each cluster, we can extract anti-perturbation elements then embed to malware feature vectors to compare the model prediction results.

Suspicious Samples Filtering – (1st step. Feature Dimension Reduction)

• Remove all low-variance features.

Suspicious Samples Filtering – (2nd step. Similarity Calculation)

- Acquire strongly goodware-oriented features and values for each sample based on SHAP value and surrogate model.
- Each sample can be represented as a feature dictionary $Di = \{(f_1: v_1), ..., (f_n, v_n)\}$, where f_i, v_i denotes strongly goodware-oriented features and values.
- Similarity $(D_i, D_j) = len(D_i \cap D_j)$

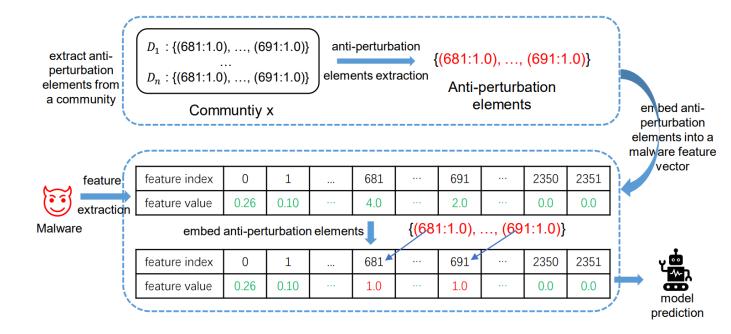
Suspicious Samples Filtering – (3rd step. Graph construction & Community Division)

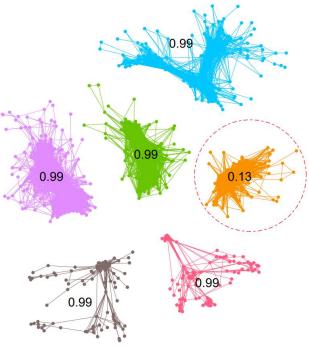
- Construct a Graph G = {V, E}, where V represents the set of samples, and E represents the edges of vertices. The weight of each edge is determined by the similarity between the vertices at both ends of the edge.
- Put the Graph as the input of Louvain algorithm to conduct community division.

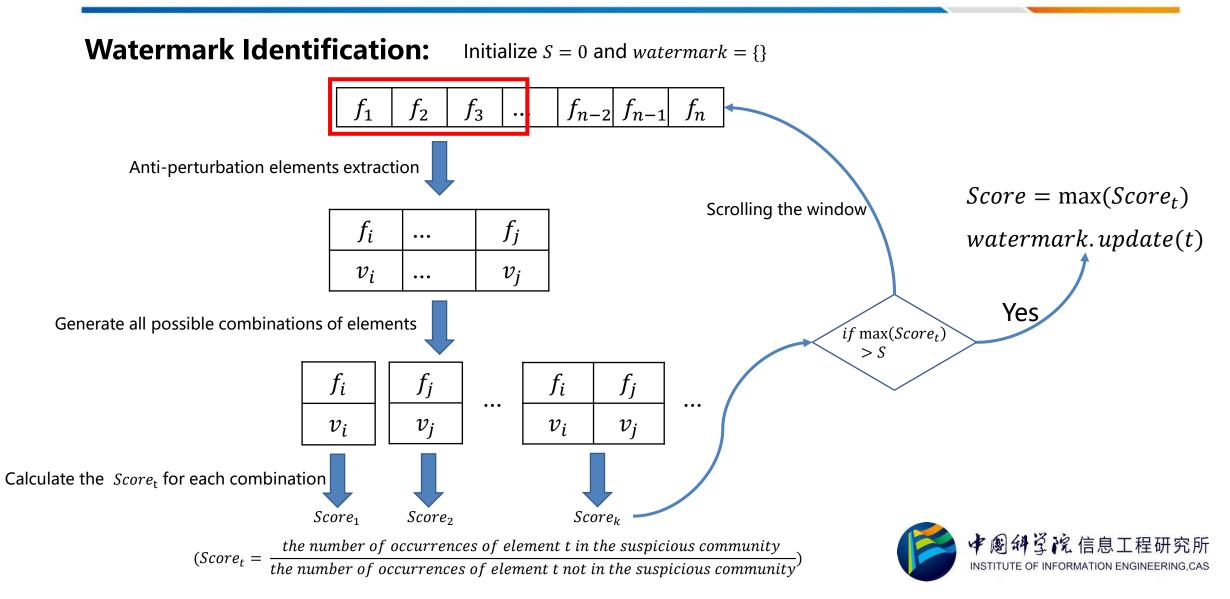
Suspicious Samples Filtering – (4th step. Suspicious Community Detection)

- For each community, extract the (f: v) pairs that enable samples to be divided into the same community, then embed them in the malware feature vectors to conduct model prediction.
- Find the suspicious community based on the lowest model prediction results of such malware feature vectors in different communities.

Suspicious Samples Filtering – (4th step. Suspicious Community Detection)







Evaluation Metrics :

 TPR_f : True positive rate for backdoored samples removal.

 FPR_f : False positive rate for backdoored samples removal.

 $Acc(F_a, X_t)$: Accuracy for the test set after mitigation.

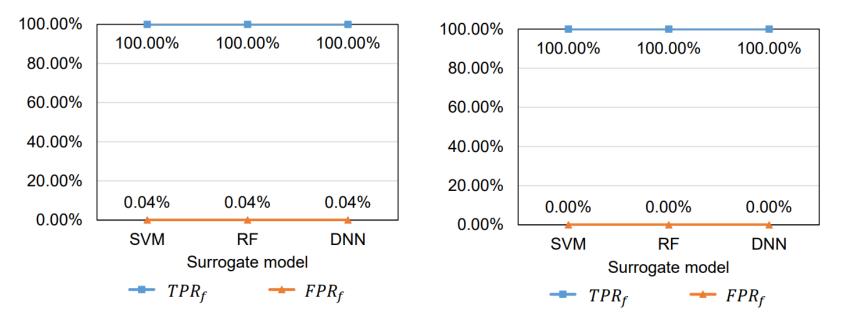
 $Acc(F_a, X_b)$: Accuracy for backdoored malware samples after mitigation.

Comparison with other mitigations

Strategy	Watermark		$Acc(F_b, X_b)$	$Acc(F_b, X_t)$	Mitigation	TPR _f	FPRf	$Acc(F_a, X_b)$	$Acc(F_a, X_t)$
	Size	Rate	nee (1 _D , n _D)						
Combined	8	1%	52.85%	94.30%	Isolation Forest	10.00%	10.10%	63.91%	92.74%
					HDBSCAN	61.00%	20.51%	58.32%	93.41%
					Spectral Signature	10.00%	15.10%	72.85%	92.29%
					MDR	99.00%	0.02%	98.10%	96.09%
		2%	39.33%	94.19%	Isolation Forest	15.00%	9.46%	62.23%	93.63%
					HDBSCAN	56.50%	21.38%	57.54%	93.41%
					Spectral Signature	12.50%	15.10%	68.60%	92.74%
					MDR	100.00%	0.02%	98.55%	96.09%
		4%	31.06%	95.20%	Isolation Forest	17.50%	8.59%	60.11%	93.30%
					HDBSCAN	66.50%	32.98%	45.03%	93.52%
					Spectral Signature	13.00%	15.17%	67.37%	92.51%
					MDR	100.00%	0.00%	98.10%	95.31%
	17	1%	36.98%	92.96%	Isolation Forest	30.00%	6.73%	62.57%	93.30%
					HDBSCAN	35.00%	12.39%	43.91%	94.64%
					Spectral Signature	10.00%	15.10%	66.93%	92.63%
					MDR	100.00%	0.02%	97.88%	95.31%
		2%	24.92%	95.42%	Isolation Forest	28.00%	5.40%	56.76%	92.96%
					HDBSCAN	46.50%	12.35%	46.26%	93.97%
					Spectral Signature	13.50%	15.06%	58.77%	92.74%
					MDR	100.00%	0.02%	98.10%	95.42%
		4%	20.34%	95.42%	Isolation Forest	20.00%	6.74%	44.58%	93.41%
					HDBSCAN	70.75%	58.35%	25.59%	98.10%
					Spectral Signature	12.50%	15.22%	57.54%	92.96%
					MDR	100.00%	0.02%	97.88%	95.64%

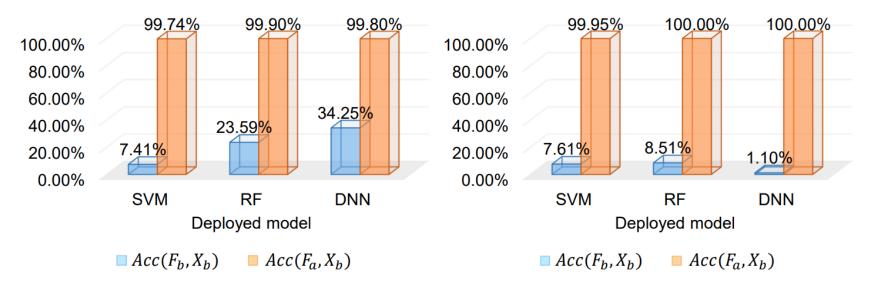
95.64% 」信息工程研究所

Surrogate-model agnostic evaluation



(a) Targeted at combined attack strategy (b) Target at Independent attack strategy

Deployed-model agnostic evaluation



(a) Targeted at combined attack strategy (b) Target at Independent attack strategy

Thanks!

Xutong Wang, Chaoge Liu, Xiaohui Hu, Zhi Wang, Jie Yin, Xiang Cui