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Introduction

• Machine Learning (ML) based malware classification has evolved significantly in 

recent decades. 

• Training for malware classification often relies on crowdsourced threat feeds, and 

backdoor poisoning attacks have demonstrated their strong power. 

• We propose MDR, a methodology to clean a given dataset and output a reliable 

dataset, thereby preventing the threat from backdoor poisoning attacks.



Background

• ML Malware Classification: It can be divided into two major categories, static 

analysis (pre-execution detection) and dynamic analysis (execution in virtual 

environment). 

• Clean-label Attacks: Without changing the label of a sample, attackers poison the 

datasets by injecting watermark (or called backdoor, a specific combination of 

feature and value pairs), which will misguide the prediction result of the victim 

model at the inference time.

• SHAP: An explanation tool used to explain the predictions of a model. It provides 

the importance of each feature value to the decision made by the classifier.



Threat Model



Motivation

Limitations:

Model-level defense : 

• Target at Computer Vision (CV).

• Focus on Deep Neural Network based classifiers only.

• Assume that attacker can actively tamper with the training label.

Input-level defense :

• Only evaluated defenses, and neither offers identification of watermarks.

• Performance are not good.
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MDR (Make Data Reliable)

Suspicious Samples Filtering 

Inspirations:

• Watermark is strongly goodware-oriented features and values, and there are more 

same goodware-oriented (feature, value) pairs among backdoored samples. The 

differences can be identified by focusing on the number of the same goodware-

oriented (feature, value) pairs among samples.  

• The differences between samples can be analyzed by clustering-like approaches.

• Watermark feature values are heavily oriented toward goodware, and they can resist 

the perturbation caused by malicious features. Therefore, After clustering, for each 

cluster, we can extract anti-perturbation elements then embed to malware feature 

vectors to compare the model prediction results.



MDR (Make Data Reliable)

Suspicious Samples Filtering – (1st step. Feature Dimension Reduction)

• Remove all low-variance features.

Suspicious Samples Filtering – (2nd step. Similarity Calculation)

• Acquire strongly goodware-oriented features and values for each sample based 

on SHAP value and surrogate model.

• Each sample can be represented as a feature dictionary 𝐷𝑖 = { 𝑓1: 𝑣1 , … , (𝑓𝑛, 𝑣𝑛)}, 

where 𝑓𝑖 , 𝑣𝑖 denotes strongly goodware-oriented features and values.

• 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐷𝑖 , 𝐷𝑗 = 𝑙𝑒𝑛(𝐷𝑖 ∩ 𝐷𝑗)



MDR (Make Data Reliable)

Suspicious Samples Filtering – (3rd step. Graph construction & Community Division)

• Construct a Graph 𝐺 = {𝑉, 𝐸}, where 𝑉 represents the set of samples, and 𝐸 represents 

the edges of vertices. The weight of each edge is determined by the similarity  

between the vertices at both ends of the edge. 

• Put the Graph as the input of Louvain algorithm to conduct community division.



MDR (Make Data Reliable)

Suspicious Samples Filtering – (4th step. Suspicious Community Detection)

• For each community, extract the (𝑓: 𝑣) pairs that enable samples to be divided 

into the same community, then embed them in the malware feature vectors to 

conduct model prediction.

• Find the suspicious community based on the lowest model prediction results of 

such malware feature vectors in different communities. 
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Suspicious Samples Filtering – (4th step. Suspicious Community Detection)
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Watermark Identification:

𝑓1 𝑓2 𝑓3 … 𝑓𝑛−2 𝑓𝑛−1 𝑓𝑛
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𝑓𝑖 𝑓𝑗

𝑣𝑖 𝑣𝑗

𝑆𝑐𝑜𝑟𝑒1 𝑆𝑐𝑜𝑟𝑒2 𝑆𝑐𝑜𝑟𝑒𝑘

(𝑆𝑐𝑜𝑟𝑒𝑡 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦
)

𝑖𝑓max 𝑆𝑐𝑜𝑟𝑒𝑡
> 𝑆

𝑆𝑐𝑜𝑟𝑒 = max(𝑆𝑐𝑜𝑟𝑒𝑡)

𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘. 𝑢𝑝𝑑𝑎𝑡𝑒(𝑡)

… …

Yes

Anti-perturbation elements extraction

Generate all possible combinations of elements

Scrolling the window

Calculate the  𝑆𝑐𝑜𝑟𝑒t for each combination

Initialize 𝑆 = 0 and 𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 = {}



Evaluation

𝑇𝑃𝑅𝑓

𝐹𝑃𝑅𝑓

𝐴𝑐𝑐(𝐹𝑎, 𝑋𝑡)

𝐴𝑐𝑐(𝐹𝑎, 𝑋𝑏)

: True positive rate for backdoored samples removal.

: False positive rate for backdoored samples removal.

: Accuracy for the test set after mitigation.

: Accuracy for backdoored malware samples after mitigation.

Evaluation Metrics : 



Evaluation
Comparison with other mitigations



Evaluation

Surrogate-model agnostic evaluation



Evaluation

Deployed-model agnostic evaluation
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