
SLOPT: Bandit Optimization Framework for　
Mutation-Based Fuzzing

Yuki Koike ¹, Hiroyuki Katsura ¹, Hiromu Yakura ², Yuma Kurogome ¹

¹ {yukik, hiroyukik, yumak}@ricsec.co.jp
² hiromu.yakura@aist.go.jp

¹ Ricerca Security, Inc., Tokyo, Japan
² University of Tsukuba, Ibaraki, Japan

² National Institute of Advanced Industrial Science and Technology (AIST), Japan

1

Fuzzing has become a widespread method to find bugs

As of July 2022, OSS-Fuzz has found over 40,500 bugs in
650 open source projects.

As of May 2022, ClusterFuzz has found 25,000+ bugs in
Google (e.g. Chrome).

Thanks to its automaticity, fuzzers are

● easy-to-use in CI/CD.
● highly scalable.

These characteristics made fuzzing in popular use.

2

2. Mutator
selects mutation operators
and applies it to the seed

bif flip

Mutation-based fuzzing

seed queue
(testcases)

1. Seed Scheduler
selects a seed to be mutated

seed

new
input

string insertion

3. Executor
evaluates the input by

running a program with it4. Save the new input to the queue if it
was valuable (= found new code blocks) new

seed

program

3

Mutation operators

0 0 1 0 1 0 0 1

BitFlip

0 0 1 0 1 1 0 1

Insert/Delete

0 0 1 0 1 0 1 0

0 0 1 0 1 0 0 1

Arith Little End

1 1 0 0 0 1 0 1

+15

1 1 0 0 0 1 0 1

4

Performance tuning (specialization) vs. generality

Fuzzer performance improves when tuned for specific programs.
E.g.

● Structure-aware fuzzing
○ considers file format during mutation not to create unfruitful invalid

inputs.
● Human-in-the-loop fuzzing

○ Human analyst adds special annotations by hand to boost fuzzing.

But such performance tunings can spoil generality and scalability.

● Employing them may narrow the range of applicable target softwares.
● It is unrealistic for us to take time to tune fuzzers for each of thousands

of open source projects.

performance

ge
ne

ra
lit

y

5

Fuzzer performance improves when tuned for specific programs.
E.g.

● Structure-aware fuzzing
○ considers file format during mutation not to create unfruitful invalid

inputs.
● Human-in-the-loop fuzzing

○ Human analyst adds special annotations by hand to boost fuzzing.

But such performance tunings can spoil generality and scalability.

● Employing them may narrow the range of applicable target softwares.
● It is unrealistic for us to take time to tune fuzzers for each of thousands

of open source projects.

performance

ge
ne

ra
lit

y

Performance tuning (specialization) vs. generality

6

performance

ge
ne

ra
lit

y

There are studies employed online optimization in mutation to
boost fuzzing performance while keeping the generality.

● Some of them found that effective mutation operators are different
depending on programs.
○ This fact serves as the foundation of these studies.

● Most related existing studies:
○ with bandit: Karamcheti et al., CMFuzz, HavocMAB
○ with heuristics: MOPT

Related work: online optimization for mutation

From “MOPT: Optimized Mutation Scheduling for Fuzzers.”
Chenyang et al. 2019. In Proceedings of the 28th USENIX
Security Symposium (Security'19). 7

Basic definition of bandit problem:

● There is the predetermined set of choices.
● Once picked, each choice returns some

rewards with an unknown probability.
● A player needs to pick one choice in each

round and maximize the total rewards
earned over T rounds.

Bandit problem

Expected rewards: 0.8 0.6

Bandit algorithms efficiently maximize rewards.
In fuzzing, choice is mutation operator and reward is whether input is valuable.

8

Our motivation is also improving fuzzer performance with generality.
We use bandit algorithms to this end because optimizing mutation
can be naturally interpreted as bandit problem.

To fully draw the power of bandit algorithms, we made three
observations before incorporating bandit algorithms into fuzzers.

Our interest: making effective use of bandit algorithms

performance

ge
ne

ra
lit

y

9

While the previous studies observed that mutation operators have different
efficiency, they apply multiple different operators to a single input in mutation.

This makes it difficult to analyze which operator was actually effective later.

Observations#1: mutation scheme

0 0 1 0 1 0

Arith Little End

1 1 0 0 0 1

+15

BitFlip

0 0 1 0 1 1

The new input was valuable.
But which was contributed?

10

We modified the mutation scheme so that only one type of mutation operator is
applied to a single input.

Empirical experiments revealed this modification does not seriously affect the
performance. Thus, there is no need to mix different mutation operators.

Observations#1: mutation scheme

11

Batch size is a parameter meaning how many operators applied to one input.
We ran AFL++ to see which batch size tended to produce valuable inputs. We found

● distributions of effective batch size are different depending on programs.
● It also depends on seed size.

○ This means optimization should be done independently for different seed sizes.

Thus, batch size also should be an optimization target.

Observations#2: batch size

12

Our proposed algorithm: SLOPT

･･･
bitflip arith

bandit problem instance of mutation operator

1. Select mutation operator.

2. Select batch size.

instance of batch size used if operator == bitflip and len(seed) ∈ [100, 1000)

bitflip

･･･
1 28

3. Mutate seed with selected parameters.

4. Check if new input was valuable
 and update problem instances.

･･･
bitflip arith

･･･
1 2

reward was 1

feedback

13

The aforementioned existing methods use different optimization algorithms
such as KL-UCB and Thompson Sampling.
Whether adopting other algorithms affects the performance was not mentioned.

We had a preliminary experiment of optimizing AFL++ with different algorithms.
It showed the difference of algorithms somewhat affects the performance.

Observations#3: optimization algorithm difference

14

We incorporated SLOPT and the aforementioned existing methods into AFL++
to compare the performance improvement (of code coverage).

The reasons we chose AFL++ as baseline
● It exactly has the mutation scheme we mentioned.
● It produces good results on various benchmarks such as FuzzBench.
● It is one of the fuzzers used in OSS-Fuzz

○ Our performance improvement can be immediately available in OSS-Fuzz.

Proof of concept and result

…

Our result
● the best in the same metrics as FuzzBench (average score and rank),
● also better in statistical significance and effect size for each program.

15

SLOPT did not outperform the others in every program.
Estimated Cause
Considering that SLOPT uses a sole operator while the others mix operators, it may imply
mixing them is fruitful sometimes.

Difficulty we faced in analysis
A lot of experiments would be needed to reveal when exactly the "sometimes" is.
Repeating experiments was very hard due to an enormous amount of required computing
resources (more than thousands CPU days).

Possible future direction
Investigating the cause may produce a more efficient hybrid optimization method of
mixing and not mixing operators.

Limitation and future work

16

To boost the performance of mutation-based fuzzer while keeping its generality, we
proposed SLOPT, a general optimization framework employing bandit algorithm.

Although some existing methods share the same motivation and direction as ours,
we made three observations they unconsidered and utilized the findings in ours.

The evaluation result showed SLOPT showed the best performance (code
coverage) reliably on average. However, considering it was not the best always,
there is still room for further investigation and improvement.

Conclusion

17

Page list for Q&A:

● Related Work: 7
● Observations#1: mutation scheme 10
● Observations#2: batch size 12
● Observations#3: optimization algorithm difference 15
● Result: 16
● Limitation: 17

Git Repo: https://github.com/RICSecLab/SLOPTAFLpp

18

Thank you!

https://github.com/RICSecLab/SLOPTAFLpp

The followings are Omitted pages

19

performance

ge
ne

ra
lit

y

Some studies employed online optimization in mutation to boost
fuzzing performance while keeping the generality.

Related work: online optimization for mutation

Some existing methods employ bandit algorithms because optimizing
mutation can be naturally interpreted as bandit problem.

● Karamcheti et al. used Thompson Sampling (a bandit algorithm)
to optimize operators with the same motivation as MOPT.

● CMFuzz extended the algorithm of Karamcheti et al. with LinUCB
(a contextual bandit algorithm).

● HavocMAB finally suggested online optimization with KL-UCB (a
bandit algorithm) through experiments similar to MOPT.

20

Batch size is a parameter controlling how many operators applied to one input.
We ran AFL++ and recorded batch size for each valuable input. Then, we found

● Batch size affects the number of valuable inputs produced.
● Which batch size is the most effective depends on programs.

Thus, batch size also should be an optimization target.

Observations#2: batch size

21

While HavocMAB previously found this finding with a different observation,

our observation also found another phenomenon:

● Distributions of effective batch size are different depending on seed size.
● This means optimization should be done independently for different seed sizes.

Observations#2: batch size

22

