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Fuzzing has become a widespread method to find bugs

As of July 2022, OSS-Fuzz has found over 40,500 bugs in 
650 open source projects.

As of May 2022, ClusterFuzz has found 25,000+ bugs in 
Google (e.g. Chrome).

Thanks to its automaticity, fuzzers are

● easy-to-use in CI/CD.
● highly scalable.

These characteristics made fuzzing in popular use.
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Mutation operators
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Performance tuning (specialization) vs. generality

Fuzzer performance improves when tuned for specific programs. 
E.g.

● Structure-aware fuzzing 
○ considers file format during mutation not to create unfruitful invalid 

inputs. 
● Human-in-the-loop fuzzing

○ Human analyst adds special annotations by hand to boost fuzzing.

But such performance tunings can spoil generality and scalability.

● Employing them may narrow the range of applicable target softwares.
● It is unrealistic for us to take time to tune fuzzers for each of thousands 

of  open source projects.
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Performance tuning (specialization) vs. generality
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There are studies employed online optimization in mutation to 
boost fuzzing performance while keeping the generality.

● Some of them found that effective mutation operators are different 
depending on programs. 
○ This fact serves as the foundation of these studies.

● Most related existing studies:
○ with bandit: Karamcheti et al., CMFuzz, HavocMAB
○ with heuristics: MOPT

Related work: online optimization for mutation

From “MOPT: Optimized Mutation Scheduling for Fuzzers.” 
Chenyang et al. 2019. In Proceedings of the 28th USENIX 
Security Symposium (Security'19). 7



Basic definition of bandit problem:

● There is the predetermined set of choices.
● Once picked, each choice returns some 

rewards with an unknown probability.
● A player needs to pick one choice in each 

round and maximize the total rewards 
earned over T rounds.

Bandit problem

Expected rewards:  0.8 0.6

Bandit algorithms efficiently maximize rewards.
In fuzzing, choice is mutation operator and reward is whether input is valuable.
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Our motivation is also improving fuzzer performance with generality.
We use bandit algorithms to this end because optimizing mutation 
can be naturally interpreted as bandit problem.

To fully draw the power of bandit algorithms, we made three 
observations before incorporating bandit algorithms into fuzzers.

Our interest: making effective use of bandit algorithms
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While the previous studies observed that mutation operators have different 
efficiency, they apply multiple different operators to a single input in mutation.

This makes it difficult to analyze which operator was actually effective later. 

Observations#1: mutation scheme

0 0 1 0 1 0

Arith Little End

1 1 0 0 0 1
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BitFlip

0 0 1 0 1 1

The new input was valuable.
But which was contributed?
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We modified the mutation scheme so that only one type of mutation operator is 
applied to a single input.

Empirical experiments revealed this modification does not seriously affect the 
performance. Thus, there is no need to mix different mutation operators. 

 

Observations#1: mutation scheme
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Batch size is a parameter meaning how many operators applied to one input.
We ran AFL++ to see which batch size tended to produce valuable inputs. We found

● distributions of effective batch size are different depending on programs.
● It also depends on seed size.

○ This means optimization should be done independently for different seed sizes.

Thus, batch size also should be an optimization target.

 

 

Observations#2: batch size
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Our proposed algorithm: SLOPT

･･･
bitflip arith

bandit problem instance of mutation operator 

1. Select mutation operator.

2. Select batch size.

instance of batch size used if operator == bitflip and len(seed) ∈ [100, 1000)

bitflip

･･･
1 28

3. Mutate seed with selected parameters. 

4. Check if new input was valuable
    and update problem instances.

･･･
bitflip arith

･･･
1 2

reward was 1

feedback
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The aforementioned existing methods use different optimization algorithms 
such as KL-UCB and Thompson Sampling. 
Whether adopting other algorithms affects the performance was not mentioned.

We had a preliminary experiment of optimizing AFL++ with different algorithms.
It showed the difference of algorithms somewhat affects the performance.

Observations#3: optimization algorithm difference
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We incorporated SLOPT and the aforementioned existing methods into AFL++ 
to compare the performance improvement (of code coverage).

The reasons we chose AFL++ as baseline
● It exactly has the mutation scheme we mentioned.
● It produces good results on various benchmarks such as FuzzBench.
● It is one of the fuzzers used in OSS-Fuzz

○ Our performance improvement can be immediately available in OSS-Fuzz.

Proof of concept and result

…

Our result
● the best in the same metrics as FuzzBench (average score and rank),
● also better in statistical significance and effect size for each program.
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SLOPT did not outperform the others in every program. 
Estimated Cause
Considering that SLOPT uses a sole operator while the others mix operators, it may imply 
mixing them is fruitful sometimes.

Difficulty we faced in analysis
A lot of experiments would be needed to reveal when exactly the "sometimes" is.
Repeating experiments was very hard due to an enormous amount of required computing 
resources (more than thousands CPU days).

Possible future direction
Investigating the cause may produce a more efficient hybrid optimization method of 
mixing and not mixing operators.

Limitation and future work
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To boost the performance of mutation-based fuzzer while keeping its generality, we 
proposed SLOPT, a general optimization framework employing bandit algorithm.

Although some existing methods share the same motivation and direction as ours, 
we made three observations they unconsidered and utilized the findings in ours.

The evaluation result showed SLOPT showed the best performance (code 
coverage) reliably on average. However, considering it was not the best always, 
there is still room for further investigation and improvement.

Conclusion
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Page list for Q&A:

● Related Work: 7
● Observations#1: mutation scheme  10
● Observations#2: batch size 12
● Observations#3: optimization algorithm difference 15
● Result: 16
● Limitation: 17

Git Repo: https://github.com/RICSecLab/SLOPTAFLpp

18

Thank you!

https://github.com/RICSecLab/SLOPTAFLpp


The followings are Omitted pages
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Some studies employed online optimization in mutation to boost 
fuzzing performance while keeping the generality.

Related work: online optimization for mutation

Some existing methods employ bandit algorithms because optimizing 
mutation can be naturally interpreted as bandit problem.

● Karamcheti et al. used Thompson Sampling (a bandit algorithm) 
to optimize operators with the same motivation as MOPT.

● CMFuzz extended the algorithm of Karamcheti et al. with LinUCB 
(a contextual bandit algorithm).

● HavocMAB finally suggested online optimization with KL-UCB (a 
bandit algorithm) through experiments similar to MOPT.
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Batch size is a parameter controlling how many operators applied to one input.
We ran AFL++ and recorded batch size for each valuable input. Then, we found

● Batch size affects the number of valuable inputs produced.
● Which batch size is the most effective depends on programs.

Thus, batch size also should be an optimization target.

 

 

Observations#2: batch size
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While HavocMAB previously found this finding with a different observation, 

our observation also found another phenomenon:

● Distributions of effective batch size are different depending on seed size.
● This means optimization should be done independently for different seed sizes.

Observations#2: batch size
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