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Privacy Attacks in Federated Learning (FL)
● Privacy Attack

• Attacks aiming at leaking private information
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Privacy-preserving Technologies
● Differential privacy

• Theoretical approach to quantifying information leakage

● Encryption methods
• Key encryption schemes such as secure multi-party computation protocols

• Incur heavy computation and communication costs
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What is this inconsistency between privacy attacks
and privacy-preserving methods?

Research Question 1
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Dissect privacy attacks by their attributes
Extraction Extent: What is the private information?

Transferability: At what scale can this attack take place?
Source: What object allows the attack?



Membership Inference Attack in FL
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Central Server

Client A

…

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

Gradient
𝛻

● Develop inference model to know data membership

● 𝑀𝑀𝐼𝐴 𝑥,𝑀𝑡𝑎𝑟𝑔𝑒𝑡, 𝐷𝑎𝑢𝑥 = ቊ
1, 𝑥 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛
0, 𝑥 ∈ 𝐷𝑡𝑒𝑠𝑡

Extraction Extent: private meta-information
Transferability: membership of all data X can be known
Source: 𝑀𝑡𝑎𝑟𝑔𝑒𝑡

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

𝐷𝑎𝑢𝑥, Data from similar 
distribution as train data

Generalization Gap

Inference Model
𝑀𝑀𝐼𝐴



Attribute Inference Attacks in FL
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Central Server

Client A

…

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

Gradient
𝛻

● Develop inference model to exploit unseen characteristics 
of the data

● Given 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 𝑥𝑖 = 𝑦𝑖 ,

● 𝑀𝐴𝐼𝐴 𝑥𝑖 , 𝑀𝑡𝑎𝑟𝑔𝑒𝑡, 𝐷𝑎𝑢𝑥 = 𝑧𝑖

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

𝐷𝑎𝑢𝑥, Black box oracle 
mapping X→Z

Algorithms for Repurposing

Inference Model
𝑀𝐴𝐼𝐴

Extraction Extent: private meta-information
Transferability: attributes of all data X can be known
Source: 𝑀𝑡𝑎𝑟𝑔𝑒𝑡



Reconstruction Attack Attributes in FL
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Central Server

Client A

…

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

Gradient
𝛻

● Recover original data from gradient information

● argmin 1 −
<𝛻𝐿𝑀 𝑥,𝑦 ,𝛻𝐿𝑀 𝑥∗,𝑦 >

𝛻𝐿𝑀 𝑥,𝑦 𝛻𝐿𝑀 𝑥∗,𝑦
+ 𝑇𝑉(𝑥∗)

𝑥∗

Extraction Extent: private raw data
Transferability: attack specific to the input gradient
Source: 𝛻

Gradient
𝛻

Optimization of sample noise 𝑥∗
Reconstructed 

data 𝑥
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Breakdown of Privacy
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FL Model

MIA, AIA

Disclosure Privacy

Distinctive Privacy

Reconstruction Attack

Membership, 
Attribute info.

Gradient info.

Raw data

Meta-information

Disclosure Privacy

Distinctive Privacy

“Privacy that ensures that any information cannot be 
inferred from the collaborative result”

“Privacy that ensures that the raw data will be secure 
and safe from exposure” 



Breakdown of Privacy
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FL Model

MIA, AIA

Disclosure Privacy

Distinctive Privacy

Reconstruction Attack

Membership, 
Attribute info.

Gradient info.

Raw data

Meta-information

Disclosure Privacy

In FL, the trained model should not leak any form of 
participant information (meta-info.).

In FL, the client data should be safe from reconstruction 
attempts.

Distinctive Privacy



Breakdown of Privacy
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FL Model

MIA, AIA

Disclosure Privacy

Distinctive Privacy

Reconstruction Attack

Membership, 
Attribute info.

Gradient info.

Raw data

Meta-information

Disclosure Privacy

By definition, differential privacy preserves disclosure 
privacy by training a safer model.

To conceal gradient information, encryption protocols 
accompanied by computation and communication 
overhead are used.

Distinctive Privacy
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Research Question 2

Select safe layers for exposure and 
mask the gradient information



Obscuring Client Gradients Problem
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To ensure distinctive privacy and prevent reconstruction, mask the gradient information

Robustness Light Trade-off

𝑋 𝑅𝑒𝑐𝑜𝑛 𝑓 𝛻 > 𝑋 𝑓 𝛻 for 

defense capability X (e.g., MSE, PSNR)

𝐶𝑜𝑠𝑡(𝑓(𝛻))≤𝐶𝑜𝑠𝑡(𝛻) in terms of 
communication cost

Allows adjustment in trade-off of 
model performance and defense
capability.

Problem: Finding obscuring function 𝑓 that obscures the gradient 𝛻 such that:



Intuition: Global Gradient 
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Central Server

Client A

…

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

Gradient
𝛻𝐴

Aggregated gradient 𝛻𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁
σ𝑖=1
𝑁 𝛻𝑖

By being closer to 𝛻𝑔𝑙𝑜𝑏𝑎𝑙, the more generalized the gradient is.

𝛻𝐺𝑙𝑜𝑏𝑎𝑙

𝛻𝐺𝑙𝑜𝑏𝑎𝑙

𝛻𝐴

𝑓(𝛻𝐴)

Selecting similar layers
with selection ratio 0.6



Fragmented Federated Learning (FFL)
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Central Server

Client A

…

AI Model
𝑀𝑡𝑎𝑟𝑔𝑒𝑡

Obscured
Gradient
𝑓(𝛻𝐴)

Aggregated gradient 𝛻𝑔𝑙𝑜𝑏𝑎𝑙 = σ𝑖=0
𝑁 𝛻𝑖

By being closer to 𝛻𝑔𝑙𝑜𝑏𝑎𝑙, the more generalized the gradient is.

𝛻𝐺𝑙𝑜𝑏𝑎𝑙

𝛻𝐺𝑙𝑜𝑏𝑎𝑙

𝛻𝐴

𝑓(𝛻𝐴)

Selecting the similar layers by cosine distance to the global gradient allows 
sending the layers of the private gradient that is most like the general 
distribution i.e. less private and more safe to send.

Selecting similar layers
with selection ratio 0.6



Fragmented Federated Learning (FFL)

18

Obscuring function 𝑓 needs to be light in terms of 1. communication and 2. computation cost

Light Communication

Light Computation

Because the global gradient is used to update the model, estimate by 
𝛻𝑔𝑙𝑜𝑏𝑎𝑙 ≈ 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −𝑀𝑝𝑟𝑒𝑣

To decrease the computation in selecting the safe portion of a gradient, we 
use layer-wise selection



Experiment Setup
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We evaluate FFL by attacking its gradients and attempting reconstruction by inverting gradients1

Comparison Description Variations

FFL-random instead of selecting similar layers, random 
layer selection

Selection ratio of 𝑟 = 0. 2, 0.4,
0.6, 0.8

DP2 Differential privacy work applied to federated 
learning by Geyer et al.

privacy budget threshold of 𝜀 = 8
when 𝛿 = 10−4, 10−5, 10−6

DGC3 Gradient compression algorithm for efficient 
communication in federated learning

Compression ratios of 𝑟𝑐𝑜𝑚𝑝 =

0.05, 0.1, 0.2



Qualitative Evaluation
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Original

Full Gradient

FFL FFL-random DP DGC

● As selection ratio 𝑟 is decreased, there is a larger degree of failure.

● While the comparisons seem to reconstruct a noisy image, FFL reconstructions are patched, possibly 
due to the fact that full layers are dropped.



Quantitative Evaluation

● At lower ratios, FFL shows to be the most effective in preventing reconstruction and therefore ensuring distinctive privacy.

● Although different for each dataset/architecture pair, 𝑟 = 0.4 shows to be the threshold for dominance in defense capability.
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Communication Cost Evaluation
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Arch. 𝒓 Param. # Size

ConvNet

0.2 134K 533KB

0.4 563K 2.24MB

0.6 2.44M 9.72MB

0.8 3.48M 13.8MB

1.0 3.49M 13.9MB

ResNet

0.2 1.67M 6.69MB

0.4 3.08M 12.3MB

0.6 15.1M 60.5MB

0.8 25.9M 104MB

1.0 44.7M 179MB

Dataset
Architecture

FFL

Train(sec) Selection (sec)

CIFAR10/ConvNet 0.94 0.03 (3.19%)

CIFAR10/ResNet 1.27 0.09 (7.09%)

CIFAR100/ResNet 1.34 0.10 (7.46%)

EMNIST/ConvNet 1.79 0.03 (1.68%)

● Transmission bits in FFL

● As the layer ratio decreases, the number of parameters in 
bits decrease

● Because layers may contain different number of parameters, 
layer ratio 𝑟 does not show a linear relationship with the 
number of parameters

● Computation time consumed in one round of FFL

● For all dataset/architecture pairs, layer selection introduces a 
marginal computation overhead compared to training.

● ResNet has more layers than ConvNet, hence the increased 
time in selection



Accuracy Evaluation
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Dataset/
Architecture

Methods

Accuracy (%)

Layer Selection Ratio 𝑟

0.2 0.4 0.6 0.8 1.0

CIFAR10/ConvNet FFL 84.42 84.28 84.31 85.05
85.08

FFL-random 83.35 84.02 84.02 84.67

CIFAR10/ResNet FFL 78.19 80.77 86.45 89.75
89.53

FFL-random 83.18 86.31 87.78 88.21

CIFAR100/ResNet FFL 63.48 64.02 68.94 72.29
72.99

FFL-random 67.3 69.77 71.00 71.89

EMNIST/ConvNet FFL 94.79 94.59 94.95 94.99
94.95

FFL-random 94.73 94.91 94.94 95.00

● FFL shows sharper decrease in accuracy than FFL-random, meaning that the ‘safe’ layers are beneficial in terms of model performance

● 𝑟 = 0.6 seems to be the most appropriate with an average of (-1.96%) in terms of model performance degradation for FFL



Conclusion
● We conducted a holistic study of privacy attacks in FL and suggest two different forms 

of privacy breach: disclosure privacy and distinctive privacy

● We propose FFL as a framework that provides distinctive privacy while being light

● FFL is a practical solution in that it introduces near negligible overhead, and shows to 
be the most effective in terms of defense capability

● We hope that our decomposition of privacy in FL can be used to better understand 
and promote privacy-preserving methods
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Thank you for listening!
Contact: harry.na@kaist.ac.kr


