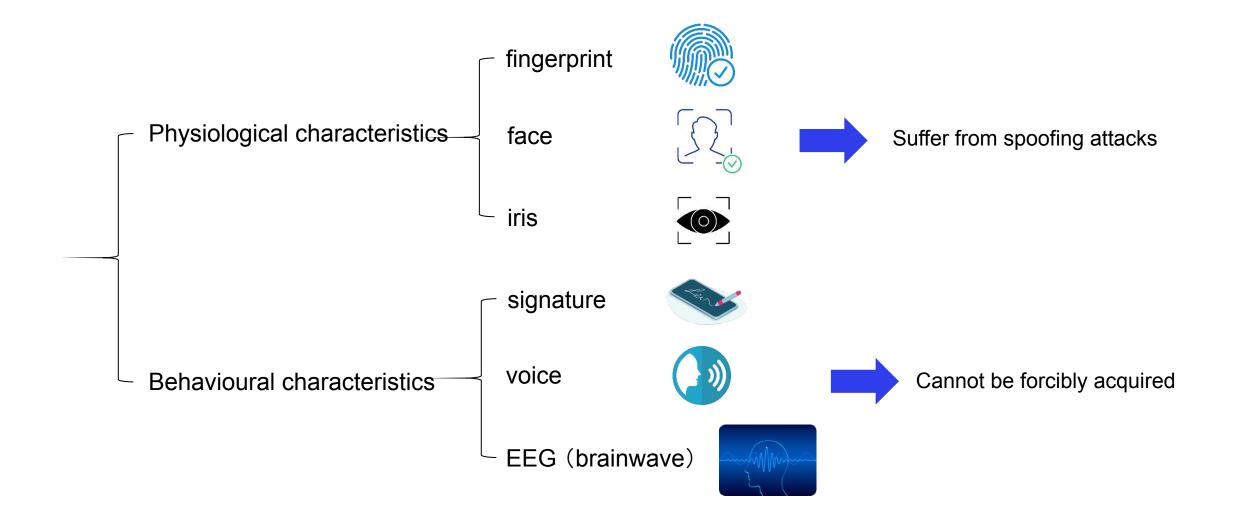


Towards Enhanced EEG-based Authentication with Motor Imagery Brain-Computer Interface

Bingkun Wu, Weizhi Meng and Wei-Yang Chiu

SPTAGE Lab, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark

Biometric Authentication

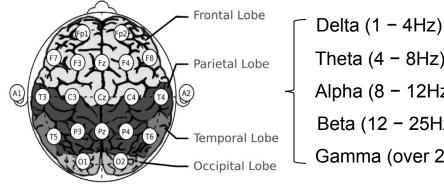


DTU **EEG** Background

recording of electrical activities of the brain, usually along the scalp surface

Functions associated to different parts of the brain(Demos, 2005).

Region	Local channels	Functions
Frontal Lobe	Fp1, FP2, FPz, Pz, F3, F7, F4, F8	Memory, concentration, emotions.
Parietal Lobe	P3, P4, Pz	Problem Solving, attention, grammar, sense of touch.
Temporal Lobe	T3, T5, T4, T6	Memory, face recognition, hearing, word recognition, social clues.
Occipital Lobe	01, 02, 0z	Reading, vision.
Cerebellum	_	Motor control, balance.
Sensorimotor Cortex	C3, C4, Cz	Attention, mental processing, fine motor control, sensory integration.





detect and investigate disease (e.g. epilepsy)

brain computer interface (e.g. motion control)

security

Amir Jalaly Bidgoly, Hamed Jalaly Bidgoly, and Zeynab Arezoumand. 2020. A survey on methods and challenges in EEG based authentication. Computers and Security 93 (2020), 101788.

EEG Authentication

Task: Motor Imagery • Authentication: to prove or disprove Help user concentrate • Identification: determine who the user is Have been extensively studied Enrolment Verification Template Process Deny Task I am the one No 30 Classifier Process Process Template Task Task Yes C Process Template Access Task

Study	Year	Туре	Task	Subject	Channel	Feature	Method	Performance
[8]	2011	auth	resting state/ motor imagery/ thinking stimuli	5	14	AR/ PSD/SP/ IHPD/ IHLC	SVM	100%
[12]	2013	auth	resting state/ motor imagery/ visual/ auditive stimuli	15	1	time series	Cosine Similarity	1.1% HTER
[35]	2016	auth	motor imagery	20	2~6	STFT	SVM/NN	98%
[28]	2016	iden	motor imagery/ movement	5	1	Wavelet Decomposition	NN	95% TAR 4.44 %FAR
[15]	2018	iden	motor imagery	40	17	time series	CNN	99.3%
[5]	2018	iden	motor imagery/ movement	10/11	64	MOFPA-WT	NN	85.71% TAR 14.28% FAR
[47]	2019	iden	motor imagery	109	16	time series	CNN-LSTM	99.58%
[4]	2022	iden	motor imagery/ movement	109	23	AR	SVM-RBF	94.13%
[7]	2015	iden	text reading (ERPs)	45	3	time series	NN	82% ~97%
[25]	2016	auth	visual stimuli/ thinking stimuli	12	14	CSP	LDA	96.97%
[14]	2016	auth	visual stimuli	50	19	time series	Similarity	95% EER confidence interva
[27]	2017	auth	gesture patterns	50	14	DFT	SVM/HMM	25% Global HTER 2.01% Local HTER
[32]	2018	auth	resting state/ math computation/ speech imagery	45	19	AR/ MFCC/ Bump	HMM	<2% EER
[37]	2019	iden	RSVP Keyboard (RSVP)	10	16	time series	Adversarial CNN	99% within-session 72% across-session

EEG Biometric evaluation

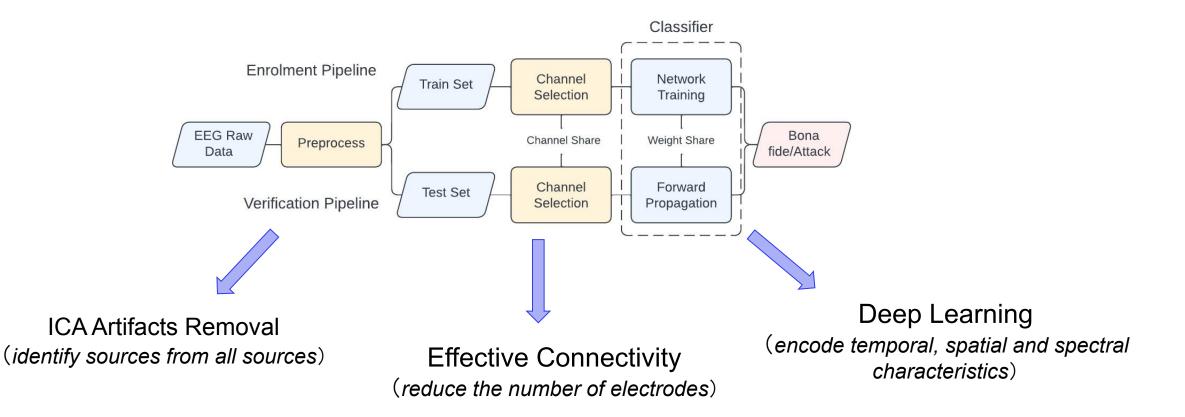
- uniqueness (50 subjects)
- collectability
- persistence

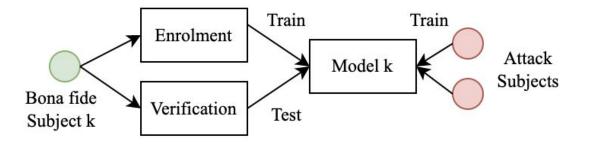
Transfer methods to Authentication

- brain connectivity
- DL classifier

An end-to-end Authentication framework

• Propose an enhanced EEG authentication framework with Motor Imagery

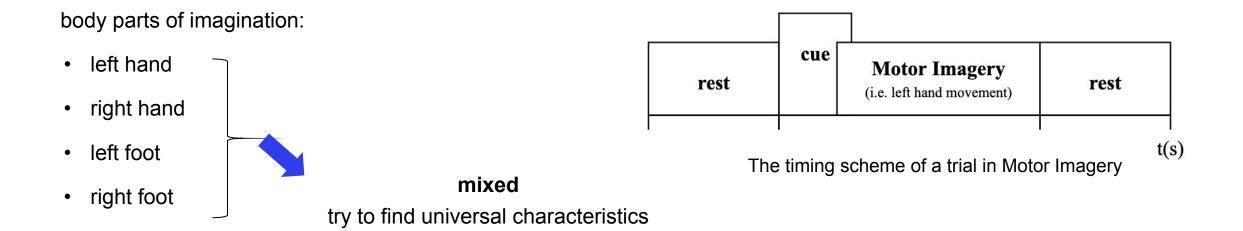




one trial => one imagination => one sample

The classifier model is trained for each subject:

- subject k => model k
- same attackers => fairness



December 2022 DTU Compute

Preprocessing

Independent Component Analysis (ICA):

separating a multivariate signal into subcomponents

Raw EEG signal E is assumed to be a linear mixture of source S and white noise N

 $E = A \times S + N$

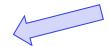
A is the matrix expressing the linear combination of sources,

And the inverse W = A - 1 is therefore the unmixing matrix to separate the sources

 $S' = W \times E$

The majority components with similar statistical

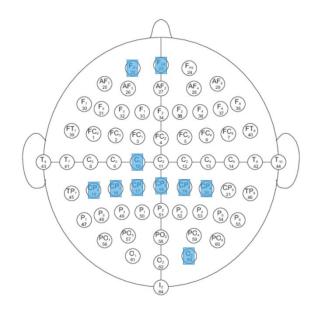
characteristics is the dominant component



Algorithm 1 K-means and ICA artifact removal

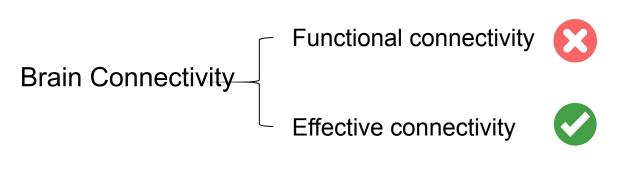
- 1: Raw EEG data of shape $(N_{trial} \times N_{channel} \times N_{sample})$, N_{trial} number of trials, $N_{channel}$ -number of channels, N_{sample} number of time samples
- 2: **for** $i = 1, 2, ..., N_{trial}$ **do**
- 3: Z-score normalization of each trial
- 4: end for
- 5: Reshape EEG data to a matrix of $(N_{channel} \times N_t)$ where $N_t = N_{trial} \times N_{sample}$.
- 6: Calculate ICA linear combination matrix *W*, using the Picard ICA algorithm.
- 7: Calculate ICA components of sources $S' = WK \times E$, *K* is the whitening matrix.
- 8: Derive descriptors, including variance, amplitude, range, max derivative, kurtosis, entropy, mean local variance and mean local skewness of each ICA component.
- 9: Utilize K-means clustering based on above features into two classes. Class with less components is considered as suspected artifacts.
- 10: Remove two components with highest variance by setting corresponding rows of S', the S'_{clean} is derived.
- 11: Reconstruct EEG data $E_{clean} = K^{-1}W^{-1}S'_{clean}$

Channel Selection



Algorithm 2 PDC-based Channel Selection

- 1: Artifact removed EEG data of subject s of shape $(N_{trial} \times N_{channel} \times N_{sample})$
- 2: **for** $i = 1, 2, ..., \hat{N}_{trial}$ **do**
- 3: To calculate PDC matrix $(N_{channel} \times N_{channel})$ for i-th trial.
- 4: To derive the mean for each column, which represents the PDC from j-th channel to all the channels.
- 5: To sort and return the maximum M mean PDC value channels.
- 6: end for
- 7: To select M most frequent channels in N_{trial} trials.



a node exerts over another under a network model of causal dynamics

described by

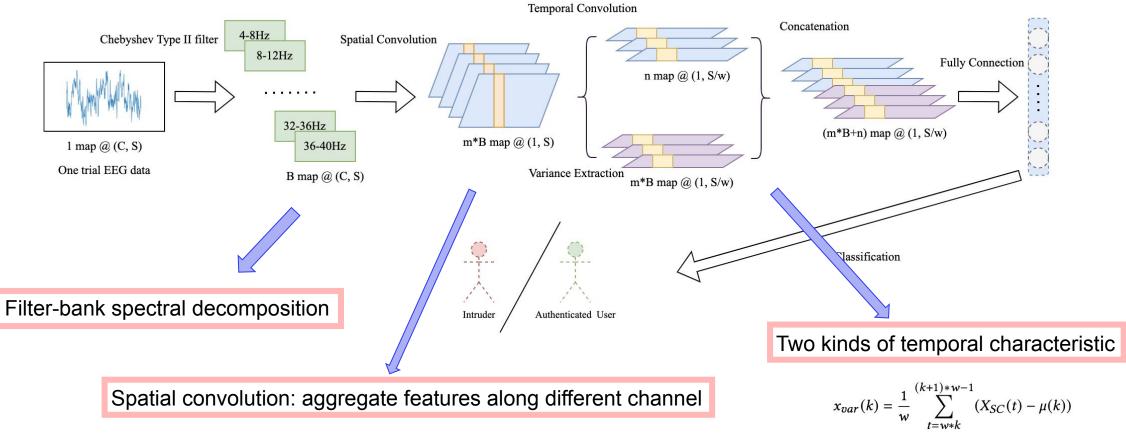
Partial Directed Coherence (PDC)

the intensity of the causal action from the *j*-th channel to the *i*-th channel

$$P_{ij}(f) = \frac{A_{ij}(f)}{\sqrt{a_j^H(f)a_j(f)}} \qquad A_{ij}(f) = I - \sum_{r=1}^p a_{ij}e^{-\pi i r f}$$

 $A_{ij}(f)$ is the frequency domain multivariate autoregressive model (MVAR) coefficient of the *i*-th channel to the *j*-th channel coefficient, *H* means conjugate transpose

Deep Learning Classification



 $X_{SC} \in \mathbb{R}^{(m \times B) \times 1 \times S}$ is the feature map, μ (*k*) is the mean value of the *k*-th window. *k* has a range of [0, *S*/*w*]

- Datasets
 - Physionet EEG Motor Movement/Imagery Dataset¹: large number of subjects (109)
 - BCI competition IV-dataset $2a^2$: two sessions on different days
- Insider Attack Performance: subjects have already been seen during enrolment
- Outsider Attack Performance: subjects have never been seen during enrolment
- Cross-session Performance: enrolment and verification performed on different days
- Comparison with SOTA: especially when using a limited number of channels
- Influence of Channel Selection: reducing the number of used channels

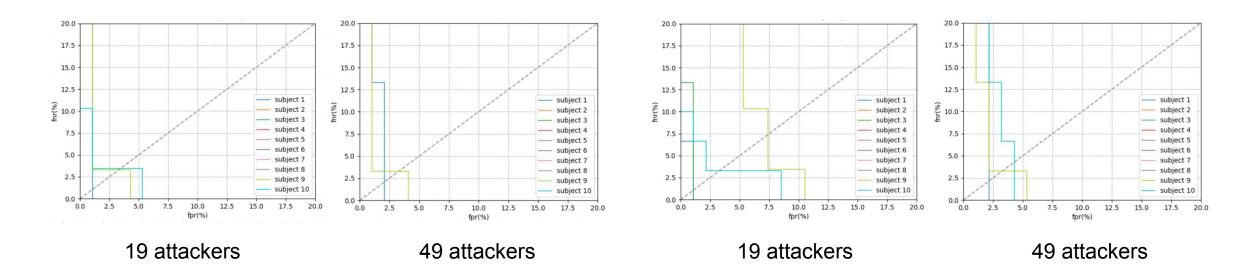
Dataset	Trials	Channels
Physionet	60	10
Enrollment Time	Verification Time	Model Parameters
8-10 mins	10	450,626

Dataset	Trials	Channels 10		
BCI IV 2a	96			
Enrollment Time	Verification Time	Model Parameters		
14-18 mins	4.5s	450,626		

Configuration of Insider/Outsider Attack Experiment

[1] https://physionet.org/content/eegmmidb/1.0.0/ [2] https://www.bbci.de/competition/iv/

Insider/Outsider Attack Performance



Outsider: Average Equal Error Rate (EER) < 1.3% using 10 channels

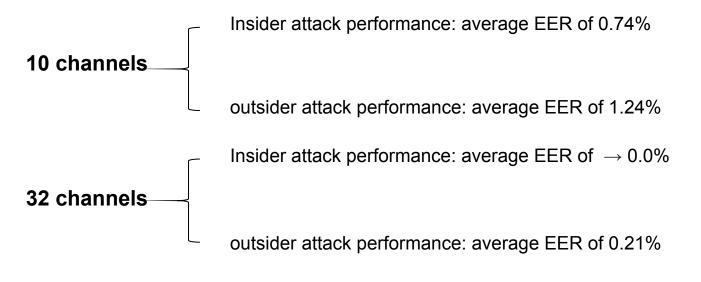
Protocol		Subject										
		1	2	3	4	5	6	7	8	9	10	avg
Insider	EER-19	1.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.19	3.15	0.74
	EER-49	2.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.06	0.0	0.51
Outsider	EER-19	1.06	0.0	1.06	0.0	0.0	0.0	0.0	0.0	7.37	3.19	1.27
	EER-47	2.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.19	4.26	0.96

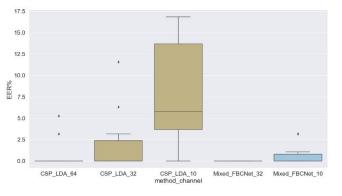
Single session performance

Proto					Sul	oject					
		1	2	3	4	5	6	7	8	9	avg
Insider	EER-4	0.0	0.0	2.34	0.0	0.0	0.58	0.0	0.0	0.0	0.32
Outsider	EER-4	9.04	0.0	20.45	1.14	0.0	0.0	1.74	12.35	0.0	4.97

Cross session performance

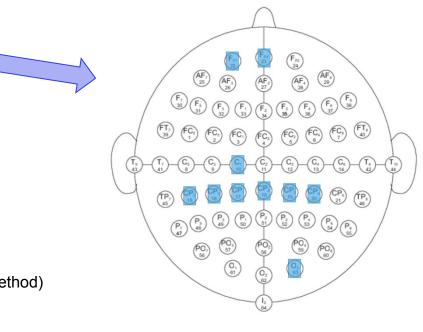
Influence of Channel Selection





The EER-19 (%) of CSP_LDA and Mixed_FBCNet (our method) using 64, 32 and 10 channels.

Skip channel selection / 10 frequently selected channels



EER of 1.21%/1.74%

Comparison with SOTA

	Method		Insider			Outsider	
		Mean	Mean	Lowest	Mean	Mean	Lowest
		Accuracy (%)	EER-19 (%)	Subject/EER-19	Accuracy (%)	EER-19 (%)	Subject/EER-19
Г	SVM[27]	90.63	6.73	10 / 13.68	91.44	5.785	3 / 24.21
	HMM[27]	76	18.23	3 / 25.85	74	20.57	7 / 27.12
	CSP_LDA	98.32	0.84	1 / 5.26	96.96	1.37	1 / 5.26
	energyNN	82.6	15.47	5 / 19.17	80.23	17.98	9 / 24.23
32 channels	MI_CNN[15]	84.96	11.88	6 / 26.08	80.56	15.02	6 / 25.27
	CNN_LSTM[47]	78.2	17.89	7 / 24.54	76	19.12	7 / 26.25
	EEGNet[29]	82.16	22.04	1 / 32.97	79.6	23.44	1 / 36.17
	CP_MixedNet[30]	74.97	9.95	1 / 13.6	67.87	15	1 / 18.22
	FBCNet[33]	98.02	1.45	3 / 4.34	96.12	1.98	7 / 6.23
10 channels	Mixed_FBCNet_10	99.48	0.74	9 / 3.19	98.89	1.27	9 / 7.37

Our method outperforms with less channels

Conclusion

- An end-to-end authentication framework for EEG
 - ICA Artifacts Removal
 - Channel Selection
 - Deep Learning Classification
- More comprehensive assessment in this work
 - many studies before have fewer than 20 subjects
 - collectability and user-friendliness
 - channel selection
 - enrollment time: 8-10 mins (robust classifier towards fewer enrolment data)
 - longitudinal performance
 - a large set of comparison
- Lack of data
 - dataset with >50 subjects and multiple sessions across a long time period

Entropy of different biometrics.

Biometric	Study	Entropy (bits)
Finger vein	Krivokuća et al. (2020)	4.2-19.5
Retina	Arakala et al. (2009)	16.7
Voice	K. Inthavisas (2012)	18-30
Iris	Hao et al. (2006)	44
Fingerprint	Li et al. (2012)	48
Face	Feng and Yuen (2012)	75
Iris	Kanade et al. (2009)	94
Gait	Hoang et al. (2015)	50-139
EEG	Sadeghi et al. (2017)	83
EEG	Bajwa and Dantu (2016)	82

Amir Jalaly Bidgoly, Hamed Jalaly Bidgoly, and Zeynab Arezoumand. 2020. A survey on methods and challenges in EEG based authentication. Computers and Security 93 (2020), 101788.

Q&A

Thanks!