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Popular Decompilers

Hex-Rays JEB Ghidra RetDec

These decompilers are all rule-based.



AI for Code
AI for Source AI for Binary

https://www.ibm.com/cloud/learn/neural-networks

This makes it possible to build a neural-based decompiler!



Neural-based Decompilers

• Neural Machine Translation Binary

Parser
File format parser
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Neural-based Decompilers

None of these works can appropriately handle the decompilation of optimized code. 

Encoder Decoder
ChineseEnglish

Neural Network

• Existing Work (end-to-end)

• Using Recurrent Neural Networks for 

Decompilation (SANER’18)

• Coda (NeurIPS’19)

• Neutron (Cybersecurity’21)



Challenges

C1: Statements of high-level programming language (HPL) are 

often significantly refactored during compiler optimization.

?

gcc –O2



Challenges

C2: Splitting low-level programming language (LPL) and HPL into 

code fragments with correct correspondence is a nontrivial task.

Scheme1:

Function/Basic Block
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Challenges

C1: Statements of HPL are often significantly refactored during 

compiler optimization.

C2: Splitting low-level programming language (LPL) and HPL into 

code fragments with correct correspondence is a nontrivial task.

It is difficult to build an end-to-end model between HPL and 

LPL without a well-labeled dataset.



Contribution

• Design a novel neural decompilation technique that can handle

compiler-optimized code.

• Design a basic block splitting scheme named optimal translation 

unit (OTU). 

• We release our dataset and the NN parameters on GitHub. 
https://github.com/zijiancogito/neur-dp-data.git

https://github.com/zijiancogito/neur-dp-data.git


Observation

C1: Statements of HPL are often significantly refactored during 

compiler optimization.

O1: The structural differences between IR and LPL are much 

more minor than those between HPL and LPL. 

HPL IR LPL

%2 = call i32 @f_scanf_nop()
%3 = call i32 @f_rand()
ret i32 0

int var0 = f_scanf_nop();
int var1 = f_rand();
int var2 = -123;
var1 = var0 + p0 * var1;
var1 = var1 / var0;
var1 = var1 / -123;
return 0;

call 1150 <f_scanf_nop>
call 1170 <f_rand>
xor %eax,%eax
pop %rcx
ret



Observation

C2: Splitting low-level programming language (LPL) and HPL into 

code fragments with correct correspondence is a nontrivial task.

O2 : 

• Most optimization strategies do not 

change the output of a basic block.

• The output of a basic block usually 

contains multiple variables whose 

DDGs often overlap. 

Compilers usually optimize the overlapped and independent parts respectively. 



Architecture of NeurDP

Preprocess End-to-End Model Postprocess
LPL

HPLLPL

HPL

NeurDP uses a neural network model to translate LPL into an optimized 

IR instead of training an end-to-end model for LPL and HPL.



Architecture of NeurDP

• Disassemble

• Identify the code sections and get all functions.

• Get the control flow graph (CFG) of each function. (Angr, SP’16)

• Analysis

• To make the model learn better, we perform static single assignment 
analysis on the LPL and transform it into LIR.

• Get the DDG of LIR.



Architecture of NeurDP

• OTU

• Find the overlapped

(TU1) and independent

(TU2 and TU3)  regions 

in DDG (C2)

• Match the units of 

LIR and HIR. (HIR is 

optimized IR)



Architecture of NeurDP

• Model
• Input: LIR unit

• Output: HIR unit

• HIR Generation
• Recover operands 

of HIR.

• Build CFG of HIR



Architecture of NeurDP

Finally, we can get a complete HPL function.

• Function recovery 

• Translate HIR statements to HPL statements by rules.

• Control structure recovery (DREAM, NDSS’15)

• Function signatures recovery (EKLAVYA, Usenix’17)



Evaluation

• Training:

• Dataset: 20,000 functions consisting of arithmetic and calling statements

• Compiler: clang10.0 with optimization levels from O0 to O3

• OUT units: 242,000 pairs, 220,000 for training and 22,000 for validation.

• Evaluating:

• Dataset: 1,000 source files, 4,000 ELFs (O0-O3), 20,000 functions 



1𝑓𝑖 is the symbolic expression of variable 𝑖

Basic Block
𝑶𝑼𝑻𝑩 = 𝑭 𝑰𝑵𝑩 ,

𝑤ℎ𝑒𝑟𝑒 𝐹 = {𝑓𝑎 , 𝑓𝑏 , … , 𝑓𝑛} 𝑨𝒄𝒄𝑩 =
𝑪𝒐𝒖𝒏𝒕𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒇𝒊
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Accuracy

• Metric



Accuracy

• Accuracy of NeurDP

• This table shows the accuracy of NeurDP for O0-O3 optimization levels.

• Our method has good robustness to the stripped binaries.



Accuracy

• Compare with SOTA

• Coda and Neutron cannot cope with the optimized code very well.



Accuracy

• Analysis of Rule-based Decompiler (RetDec)

• RetDec does not perform as well as neural-based decompilers.

• Many errors are caused by the fact that the development of some 

features is not yet complete.

Building a rule-based decompiler is not easy!



Accuracy

• Compare with Different Neural Networks

• The results show that using HIR as the translation target of the model 

is highly generalizable for optimized code.



Accuracy

• Impact under Different Translation Unit

• OTU can maximize the automation of obtaining LIR and HIR pairs with 

the correct correspondence for training.



Summary

• Conclusion

• We propose and implement a neural decompilation framework named 

NeurDP. We design a splitting scheme OTU suitable to form a 

dataset for building a better model. The evaluation results show that 

NeurDP achieves better accuracy for optimized code than SOTA neural 

decompilers. 

• Limitation & Future Work

• Building NeurDP still needs much development effort. We plan to 

include more types of statements. Explore techniques for improving the 

decompilation quality of NeurDP.

https://github.com/zijiancogito/neur-dp-data.git

https://github.com/zijiancogito/neur-dp-data.git


Thank you!
Q&A
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