
Boosting Neural Networks to
Decompile Optimized Binaries

Ying Cao1,2, Ruigang Liang1,2, Kai Chen1,2,3, Peiwei Hu1,2

1SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences
2School of CyberSecurity, University of Chinese Academy of Sciences

3Beijing Academy of Artificial Intelligence

December 9, 2022

Popular Decompilers

Hex-Rays JEB Ghidra RetDec

These decompilers are all rule-based.

AI for Code
AI for Source AI for Binary

https://www.ibm.com/cloud/learn/neural-networks

This makes it possible to build a neural-based decompiler!

Neural-based Decompilers

• Neural Machine Translation Binary

Parser
File format parser

Disassemble

Assembly code parser

Neural

Network

Source

AST

Neural-based Decompilers

None of these works can appropriately handle the decompilation of optimized code.

Encoder Decoder
ChineseEnglish

Neural Network

• Existing Work (end-to-end)

• Using Recurrent Neural Networks for

Decompilation (SANER’18)

• Coda (NeurIPS’19)

• Neutron (Cybersecurity’21)

Challenges

C1: Statements of high-level programming language (HPL) are

often significantly refactored during compiler optimization.

?

gcc –O2

Challenges

C2: Splitting low-level programming language (LPL) and HPL into

code fragments with correct correspondence is a nontrivial task.

Scheme1:

Function/Basic Block

…

Challenges

C2: Splitting low-level programming language (LPL) and HPL into

code fragments with correct correspondence is a nontrivial task.

Scheme1:

Function/Basic Block

…

Scheme2:

Debug Information

Challenges

C2: Splitting low-level programming language (LPL) and HPL into

code fragments with correct correspondence is a nontrivial task.

Scheme1:

Function/Basic Block

…

?

Scheme2:

Debug Information

Challenges

C2: Splitting low-level programming language (LPL) and HPL into

code fragments with correct correspondence is a nontrivial task.

Scheme1:

Function/Basic Block

…

?

Challenges

C1: Statements of HPL are often significantly refactored during

compiler optimization.

C2: Splitting low-level programming language (LPL) and HPL into

code fragments with correct correspondence is a nontrivial task.

It is difficult to build an end-to-end model between HPL and

LPL without a well-labeled dataset.

Contribution

• Design a novel neural decompilation technique that can handle

compiler-optimized code.

• Design a basic block splitting scheme named optimal translation

unit (OTU).

• We release our dataset and the NN parameters on GitHub.
https://github.com/zijiancogito/neur-dp-data.git

https://github.com/zijiancogito/neur-dp-data.git

Observation

C1: Statements of HPL are often significantly refactored during

compiler optimization.

O1: The structural differences between IR and LPL are much

more minor than those between HPL and LPL.

HPL IR LPL

%2 = call i32 @f_scanf_nop()
%3 = call i32 @f_rand()
ret i32 0

int var0 = f_scanf_nop();
int var1 = f_rand();
int var2 = -123;
var1 = var0 + p0 * var1;
var1 = var1 / var0;
var1 = var1 / -123;
return 0;

call 1150 <f_scanf_nop>
call 1170 <f_rand>
xor %eax,%eax
pop %rcx
ret

Observation

C2: Splitting low-level programming language (LPL) and HPL into

code fragments with correct correspondence is a nontrivial task.

O2 :

• Most optimization strategies do not

change the output of a basic block.

• The output of a basic block usually

contains multiple variables whose

DDGs often overlap.

Compilers usually optimize the overlapped and independent parts respectively.

Architecture of NeurDP

Preprocess End-to-End Model Postprocess
LPL

HPLLPL

HPL

NeurDP uses a neural network model to translate LPL into an optimized

IR instead of training an end-to-end model for LPL and HPL.

Architecture of NeurDP

• Disassemble

• Identify the code sections and get all functions.

• Get the control flow graph (CFG) of each function. (Angr, SP’16)

• Analysis

• To make the model learn better, we perform static single assignment
analysis on the LPL and transform it into LIR.

• Get the DDG of LIR.

Architecture of NeurDP

• OTU

• Find the overlapped

(TU1) and independent

(TU2 and TU3) regions

in DDG (C2)

• Match the units of

LIR and HIR. (HIR is

optimized IR)

Architecture of NeurDP

• Model
• Input: LIR unit

• Output: HIR unit

• HIR Generation
• Recover operands

of HIR.

• Build CFG of HIR

Architecture of NeurDP

Finally, we can get a complete HPL function.

• Function recovery

• Translate HIR statements to HPL statements by rules.

• Control structure recovery (DREAM, NDSS’15)

• Function signatures recovery (EKLAVYA, Usenix’17)

Evaluation

• Training:

• Dataset: 20,000 functions consisting of arithmetic and calling statements

• Compiler: clang10.0 with optimization levels from O0 to O3

• OUT units: 242,000 pairs, 220,000 for training and 22,000 for validation.

• Evaluating:

• Dataset: 1,000 source files, 4,000 ELFs (O0-O3), 20,000 functions

1𝑓𝑖 is the symbolic expression of variable 𝑖

Basic Block
𝑶𝑼𝑻𝑩 = 𝑭 𝑰𝑵𝑩 ,

𝑤ℎ𝑒𝑟𝑒 𝐹 = {𝑓𝑎 , 𝑓𝑏 , … , 𝑓𝑛} 𝑨𝒄𝒄𝑩 =
𝑪𝒐𝒖𝒏𝒕𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒇𝒊

𝑯𝑷𝑳

𝑪𝒐𝒖𝒏𝒕 𝒇𝒊
𝑳𝑷𝑳 , 𝑤ℎ𝑒𝑟𝑒

𝑓𝑖
𝐻𝑃𝐿 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑓 𝑓𝑖

𝐻𝑃𝐿 = 𝑓𝑖
𝐿𝑃𝐿

Program Accuracy:

𝐴𝑐𝑐 =෍
𝑘=1

𝑁

𝐴𝑐𝑐𝐵 𝐵𝑖 /𝑁 ,

𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝐶𝑜𝑢𝑛𝑡(𝐵)

𝑶𝑼𝑻𝒂 = 𝒇𝒂(𝑰𝑵𝑩)
1

𝑶𝑼𝑻𝒃 = 𝒇𝒃(𝑰𝑵𝑩)

𝑶𝑼𝑻𝒏 = 𝒇𝒏(𝑰𝑵𝑩)

𝑰𝑵𝑩

Accuracy

• Metric

Accuracy

• Accuracy of NeurDP

• This table shows the accuracy of NeurDP for O0-O3 optimization levels.

• Our method has good robustness to the stripped binaries.

Accuracy

• Compare with SOTA

• Coda and Neutron cannot cope with the optimized code very well.

Accuracy

• Analysis of Rule-based Decompiler (RetDec)

• RetDec does not perform as well as neural-based decompilers.

• Many errors are caused by the fact that the development of some

features is not yet complete.

Building a rule-based decompiler is not easy!

Accuracy

• Compare with Different Neural Networks

• The results show that using HIR as the translation target of the model

is highly generalizable for optimized code.

Accuracy

• Impact under Different Translation Unit

• OTU can maximize the automation of obtaining LIR and HIR pairs with

the correct correspondence for training.

Summary

• Conclusion

• We propose and implement a neural decompilation framework named

NeurDP. We design a splitting scheme OTU suitable to form a

dataset for building a better model. The evaluation results show that

NeurDP achieves better accuracy for optimized code than SOTA neural

decompilers.

• Limitation & Future Work

• Building NeurDP still needs much development effort. We plan to

include more types of statements. Explore techniques for improving the

decompilation quality of NeurDP.

https://github.com/zijiancogito/neur-dp-data.git

https://github.com/zijiancogito/neur-dp-data.git

Thank you!
Q&A

	幻灯片 1: Boosting Neural Networks to Decompile Optimized Binaries
	幻灯片 2: Popular Decompilers
	幻灯片 3: AI for Code
	幻灯片 4: Neural-based Decompilers
	幻灯片 5: Challenges
	幻灯片 6: Challenges
	幻灯片 7: Challenges
	幻灯片 8: Challenges
	幻灯片 9: Challenges
	幻灯片 10: Challenges
	幻灯片 11: Contribution
	幻灯片 12: Observation
	幻灯片 13: Observation
	幻灯片 14: Architecture of NeurDP
	幻灯片 15: Architecture of NeurDP
	幻灯片 16: Architecture of NeurDP
	幻灯片 17: Architecture of NeurDP
	幻灯片 18: Architecture of NeurDP
	幻灯片 19: Evaluation
	幻灯片 20: Accuracy
	幻灯片 21: Accuracy
	幻灯片 22: Accuracy
	幻灯片 23: Accuracy
	幻灯片 24: Accuracy
	幻灯片 25: Accuracy
	幻灯片 26: Summary
	幻灯片 27: Thank you!

