

Drone Authentication via Acoustic Fingerprint

Yufeng Diao, Yichi Zhang, Guodong Zhao, Mohamed Khamis University of Glasgow

Reported by: Yufeng Diao

Introduction

Drones in everywhere

Agriculture

Film production

Rescue operation

Current Solution of Drone Detection and Classification

Limitation: cannot authenticate drones

Drone Authentication Methods

- Software-level digital certificate
 - General used
 - But vulnerable to cyber attack
- Physical characteristic
 - Naturally embedded inside a drone
 - Could be used as additional authentication with a digital certificate

Our Contribution

- Flying drone authentication
- Explore the setting of the Mel-frequency cepstral coefficient (MFCC)
- Performance of eight machine learning methods
- Acoustic fingerprint = body × propellers
- Closed set + Open set authentication problems

Dataset Collection

Recording Room

Figure: Recording room setup

Drone No.

Combination of drone body and propellers

Dataset

- DS1: No.1 No.8
- DS2: No.1 No.24
- DS1N: AWGN + DS1
 - 0 dB SNR
- DS2N: AWGN + DS2
 - 93 levels of SNR
 - SNR range from -8.00 dB to 15.00 dB
- 60 minutes of real indoor noise

Orone No.	Combination	1m (s)	5m (s)	Total (s)
1	"A" & a1-a4	609.94	609.94	1219.88
2	"B" & b1-b4	605.00	605.00	1210.00
3	"C" & c1-c4	612.01	612.01	1224.02
4	"D" & d1-d4	606.00	606.00	1212.01
5	"E" & e1-e4	605.93	605.93	1211.87
6	"F" & f1-f4	605.93	605.93	1211.87
7	"G" & g1-g4	606.00	606.00	1212.01
8	"H" & h1-h4	607.07	607.07	1214.14
9	"A" & x1-x4	609.94	609.94	1219.88
10	"B" & x1-x4	604.93	604.93	1209.87
11	"C" & x1-x4	615.08	615.08	1230.16
12	"D" & x1-x4	608.07	608.07	1216.14
13	"E" & x1-x4	603.93	603.93	1207.87
14	"F" & x1-x4	607.00	607.00	1214.01
15	"G" & x1-x4	610.07	610.07	1220.15
16	"H" & x1-x4	608.00	608.00	1216.01
17	"A" & y1-y4	626.02	626.02	1252.05
18	"B" & y1-y4	605.93	605.93	1211.87
19	"C" & y1-y4	607.07	607.07	1214.14
20	"D" & y1-y4	627.96	627.96	1255.92
21	"E" & y1-y4	604.93	604.93	1209.87
22	"F" & y1-y4	605.00	605.00	1210.00
23	"G" & y1-y4	605.00	605.00	1210.00
24	"H" & y1-y4	635.96	635.96	1271.93
Total	-	14642.89	14642.89	29285.79

Table: Collected Drone Audio

MFCC Exploration

Figure: Spectrum of Drone No.1 and No.2

Feature Extraction

- Mel-frequency cepstral coefficient (MFCC)
- Delta MFCC (DMFCC)
 - Difference between two MFCC
- Delta-Delta MFCC (DDMFCC)
 - Difference between two DMFCC
- Reduce the instantaneous noise via feature normalization

•
$$v'_{\text{Feature}} = \frac{v_{\text{Feature}}}{||v_{\text{Feature}}||}$$

Eight Widely Used Machine Learning Method

- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Linear kernel Support Vector Machine (LSVM)
- Radial Basis Function kernel Support Vector Machine (RBF-SVM)
- K-Nearest Neighbor (KNN)
- Decision Tree (DT)
- Random Forest (RF)
- Gaussian Naïve Bayes (GNB)

University of Glasgow

Influence of Frame Length on Accuracy

50 filters and 49features (from 2 to50) of MFCC are used

Filter-varying Experiment – DS1

MFCC

MFCC + DMFCC

MFCC + DMFCC + DDMFCC

Filter-varying Experiment – DS1N

MFCC

Feature Extraction Configuration

- Frame length: 1000ms
- Frame overlap: 50%
- Number of filters: 201
- Number of used features: from 2 to 201 features
- Type of features: only MFCC

Security Study

Security Study – Threat Model

Security Study – Design

- Background drones
 - 60 minutes of real indoor noise
 - 8 drones
- Registered drones
 - 8 drones
- Attack drones
 - 8 drones
- No overlap between different types

Security Study – Setup

Experiment No.	Registered Drone No.	Background Drone No.	Attack Drone No.
1	1, 2, 3, 4, 5, 6, 7, 8	9, 10, 11, 12, 13, 14, 15, 16	17, 18, 19, 20, 21, 22, 23, 24
2	1, 2, 4, 7, 10, 16, 17, 20	3, 5, 6, 14, 15, 18, 19, 21	8, 9, 11, 12, 13, 22, 23, 24
3	3, 5, 9, 14, 16, 17, 19, 24	2, 6, 8, 11, 12, 15, 18, 21	1, 4, 7, 10, 13, 20, 22, 23
4	3, 12, 13, 16, 20, 21, 22, 24	6, 7, 8, 9, 14, 15, 17, 18	1, 2, 4, 5, 10, 11, 19, 23
5	2, 5, 6, 8, 14, 17, 18, 20	1, 4, 7, 9, 10, 12, 19, 23	3, 11, 13, 15, 16, 21, 22, 24
6	1, 10, 11, 15, 17, 18, 23, 24	3, 5, 8, 9, 12, 13, 19, 20	2, 4, 6, 7, 14, 16, 21, 22
7	2, 3, 4, 5, 11, 12, 15, 24	1, 6, 7, 10, 16, 18, 21, 22	8, 9, 13, 14, 17, 19, 20, 23
8	4, 5, 7, 8, 10, 17, 18, 21	1, 3, 11, 13, 15, 19, 23, 24	2, 6, 9, 12, 14, 16, 20, 22
9	4, 5, 6, 11, 12, 13, 14, 23	1, 2, 3, 17, 19, 20, 22, 24	7, 8, 9, 10, 15, 16, 18, 21
10	5, 9, 10, 12, 17, 18, 21, 23	1, 6, 7, 13, 15, 16, 20, 22	2, 3, 4, 8, 11, 14, 19, 24

Table: Attack Experiment Setup

Security Study – Registered Drones

Experiment No.	QDA (%)	LDA (%)	LSVM (%)	RBF-SVM (%)	KNN (%)	DT (%)	RF (%)	GNB (%)
1	97.16	95.24	97.28	35.41	95.53	75.24	89.30	83.80
2	95.66	91.69	92.49	9.92	93.78	70.12	77.84	83.84
3	94.23	87.78	90.76	2.68	93.05	64.50	71.89	80.60
4	94.30	90.32	91.34	10.71	91.91	65.09	74.86	85.12
5	94.56	88.21	89.19	10.94	93.67	69.93	76.02	85.16
6	92.53	86.85	88.74	6.14	90.44	57.52	67.96	72.48
7	95.56	94.54	94.85	23.84	95.99	72.64	83.30	87.67
8	92.97	86.14	88.64	7.06	90.00	58.48	69.31	69.70
9	94.29	92.24	92.42	18.53	95.52	69.98	82.34	88.72
10	90.60	83.39	85.40	5.31	87.28	54.80	60.21	66.05
Average	94.19	89.64	91.11	13.05	92.71	65.83	75.30	80.31

Table: Recall of Authentication on Registered Drones

Security Study – Unregistered Drones

Experiment No.	QDA (%)	LDA (%)	LSVM (%)	RBF-SVM (%)	KNN (%)	DT (%)	RF (%)	GNB (%)
1	99.78	98.51	99.69	100.00	97.96	87.45	99.88	79.21
2	77.93	60.90	57.64	99.43	46.57	56.23	73.85	20.64
3	73.85	63.79	68.06	99.71	42.60	59.74	85.33	16.52
4	90.95	84.81	84.50	100.00	73.82	73.98	94.05	44.09
5	75.89	60.10	67.33	99.95	52.77	60.60	72.40	16.23
6	87.64	67.85	72.71	96.74	65.12	74.06	90.16	60.47
7	77.86	63.19	60.98	98.76	55.03	60.11	80.46	16.72
8	84.50	58.08	56.49	95.58	55.02	56.06	91.33	41.40
9	65.93	53.98	45.34	96.94	29.71	38.56	70.34	8.64
10	89.19	53.75	51.62	93.85	50.55	57.99	88.95	35.52
Average	82.35	66.50	66.44	98.10	56.92	62.48	84.68	33.94

Table: Recall of Authentication on Unregistered Drones

- First work to authenticate flying drones via acoustic fingerprints
- Find effective feature extraction settings
- Address open set authentication problem
 - QDA outperformed other methods
 - highest average recall (94.19%) in registered drones
 - third-highest average recall (82.35%) in unregistered drones

https://github.com/Eidos1970/Drone-Authentication-via-Acoustic-Fingerprint

Thanks for listening

Q & A