
Compact Abstract Graphs for Detecting Code 
Vulnerability with GNN Models

Luo Yu
Computer Science Electrical Engineering

University of Missouri-Kansas City
Kansas City, USA

Dianxiang Xu
Computer Science Electrical Engineering

University of Missouri-Kansas City
Kansas City, USA

Weifeng Xu
School of Criminal Justice

The University of Baltimore
Baltimore, USA



Agenda

• Goals

• Abstract Graph (AG)

• Compact Abstract Graph (CAG)

• Framework

• Experiments

• Conclusion



Goals

To address the practical issue of source code representation for exploiting the 
state-of-the-art GNN models to detect a broad range of code vulnerabilities. We 
propose Compact Abstract Graphs (CAGs) of source code in different 
programming languages (e.g., Java and C) for efficient vulnerability prediction 
with various GNN models. 



Abstract Graphs 



Compact Abstract Graphs (CAG)

Compress AG by two steps:

• Merging Single-Entry Node Sequences

• Merging Aggregation Structures



Merging Single-Entry Node Sequences

Formally, given abstract graph ⟨𝑁, 𝐸, 𝑠⟩ and a node sequence ⟨𝑛1, 𝑛2, ...𝑛𝑘 ⟩, 
merging the sequence results in a new abstract graph ⟨𝑁 ′, 𝐸′, 𝑠⟩ such that 𝑁 ′ 
= 𝑁 \{𝑛1, 𝑛2, ...𝑛𝑘 } ∪ {𝑛} and 𝐸′ = 𝐸 \{(𝑛1, 𝑛2), (𝑛2, 𝑛3), ..., (𝑛𝑘−1, 𝑛𝑘 ), (𝛼, 
𝑛1), (𝑛k, 𝜔)} } ∪ {(𝛼, 𝑛), (𝑛, 𝜔)}, where 𝑛 is the new merged node, (𝛼, 𝑛1) ∈ 𝐸, 
(𝑛𝑘 , 𝜔) ∈ 𝐸.

After Merging



Merging Single-Entry Node Sequences



Merging Aggregation Structures

Whether an aggregation structure can be compressed depends on two conditions:

• Each child node 𝑛𝑖 in the structure has exactly one entry edge. If any child 

node has two or more entry edges, we cannot merge the aggregation structure; 

Otherwise, it would lose structural information. 

• The structure represents the part-whole relation of a programming construct.



Merging Aggregation Structures



Merging Aggregation Structures



Framework



GNN Models

• Graph Convolutional Networks (GCNs)

• Graph Attention Networks (GATs)

• Unified Message Passing Model (UniMP)

• GNNs with autoregressive moving average filter (ARMAConv)

• Residual Gated Graph ConvNets (ResGatedGCNs) 

• Feature-Steered Graph Convolutions (FeaStNet)



Dataset



Experiment



Effectiveness of Graph Reduction



Comparison with ASTs, CFGs and PDGs



Comparison with the Related Works



Comparison with the Related Works



Applications



Conclusion

• Presented CAGs as a novel source code representation for predicting 

software vulnerabilities.

• Using Java and C datasets with 220 types of vulnerabilities have 

demonstrated that CAGs are much more efficient than ASTs, CFGs, and 

PDGs.

• Applied to more than 2,500 vulnerabilities collected from real-world 

software projects.



Thank You


