



**ACSAC 2022** December 5-9, 2022 · Austin, Texas, USA

# Squeezing More Utility via Adaptive Clipping on Differentially Private Gradients in **Federated Meta-Learning**

Authors: **Ning Wang**', Yang Xiao<sup>†</sup>, Yimin Chen<sup>‡</sup>, Ning Zhang<sup>\*</sup>, Wenjing Lou<sup>'</sup>, and Y. Thomas Hou<sup>'</sup>

> Virginia Tech ' University of Kentucky <sup>†</sup> University of Massachusetts Lowell <sup>‡</sup> Washington University in St. Louis \*

### Our data is used by AI applications!

Next word suggestion of Gboard.





# Our data is used by AI applications!





### What's Federated Learning?





### Is Data Privacy fully Protected by FL?

- The model parameters are open to the server directly and to other clients indirectly.
- Can attacker infer data from model?



Q: How likely is this picture to be `John Smith'?

# Training Data is Memorized by the Model

# Privacy Attack: Inference Attack

- FL cannot guarantee the training data privacy.
- State-of-the-art Inference Attack
  - Membership inference attack [1,2]
  - Model Inversion Attack [3]
  - Attribute Inference Attack [4]

[1] Milad Nasr et al. 2019. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP 19). IEEE, 739–753.
[2] Jingwen Zhang, Jiale Zhang, Junjun Chen, and Shui Yu. 2020. Gan enhanced membership inference: A passive local attack in federated learning. In ICC 20202020 IEEE International Conference on Communications (ICC). IEEE, 1–6.
[3] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. 2019. Beyond inferring class representatives: User-level privacy leakage from federated learning. In IEEE Conf. on Computer Communications (INFOCOM). IEEE, 2512–2520.

[4] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. 2009. Learning your identity and disease from research papers: information leaks in genome wide association study. In Proceedings of the 16th ACM conference on Computer and communications security (CCS). ACM, 534–544.



# Problem and Goal of this Paper

- Problem
  - FL can protect data privacy to some extend.
  - Attackers are still capable to infer training data while knowing the model parameters.
  - Differential Privacy (DP) is a tool for privacy protection, but it harms the accuracy a lot.
  - Mobile used data size can be small.

• Goal

- Provide rigorous privacy guarantee for users by incorporate DP.
- Maintain a good trade-off between privacy and accuracy.



### DP preliminary: Inference Attack on Databases

- What is the inference attack in a database?
  - Use the statistical/aggregate queries that are authorized to gain information that are not authorized.
- Example: Exam score database.
  - Tuple: (student\_id, score)
  - Average score on an exam is a query everyone is allowed to run.
  - Attacker wants to find the exact score of some student.

Inference attack sometimes requires some additional external information. e.g., Attacker knows Alice took the exam late.



# DP preliminary: Adjacent Databases

- What's Adjacent database?
  - Two databases only have one record difference.
  - E.g., a database with Alice data in, a database without Alice Data.
- Once attackers have access to the adjacent database, it can launch inference attack.

How to solve the inference attack?



# Differential Privacy (DP)



 DP allows to learn useful information of the population without leaking individual privacy.

 $(\varepsilon, \delta)$ -differential privacy: A random mechanism  $\mathcal{M}: \mathcal{D} \to \mathcal{R}$  satisfies  $(\varepsilon, \delta)$ -differential privacy if for any two adjacent inputs  $(d, d' \in \mathcal{D})$  and for any subset of outputs  $S \in \mathcal{R}$  it holds that:  $\Pr[\mathcal{M}(d) = S] \leq e^{\varepsilon} \Pr[\mathcal{M}(d') = S] + \delta$ 

### Key Step of DP

- Adding Randomness
  - Gaussian Noise
  - Laplace Noise





# Differentially private federated Learning

Problem: low accuracy



**Continual Training does help.** 

**But it requires Enough Data & Training Power/Time** 



# To cope with small size of local data

#### Federated Learning → Federated Meta-Learning

- Deal with few-shot problem.
- Fast adaptation/customization.



### **Two Threat Models**

- Central server is trusted, clients are honest-but-curious.
- Both central server and clients are honest-but-curious.





### **DP in Federated Meta-learning**

#### Adding noise

- The noise should be proportional to the largest gradient.
- To avoid too large noise, we should clip the gradient.





# **Our Proposal**

#### Adaptive Clipping

- Naïve constant clipping maintain a fixed clipping threshold C. The noise will be: k \* C.
- Adaptive clipping: change the threshold C adaptively.
- Why adaptive clipping better?



The gradients will decrease during the course of training.

# We can change the threshold *C* according to the gradient change.



# Adaptive Clipping

- We *cannot* use the true gradient scale to adaptively decide *C*.
- Our proposal: determine C by using historical DP gradients in a window of size W:

$$C_{W+1} = f([\tilde{g}_1, \dots, \tilde{g}_W], k)$$

Algorithm 2: Adaptive Cilpping **Input:** Clients set  $\mathcal{T}$ , noise multiplier *z*, user sample size *L*, Learning round T, Window size W Output: Clipping Threshold C 1 Initialize  $C = C_0$ ; <sup>2</sup> while and  $t \leq T$  do Randomly Sample *L* clients  $\mathcal{T}_s \leftarrow \text{sample}(\mathcal{T}, L)$ ; 3 if t > W then 4  $C \leftarrow f([\tilde{g}_{t-W}, ..., \tilde{g}_{t-1}], k)$ 5 The DP version Gradients for  $i \in \mathcal{T}_s$  do 6  $g_i \leftarrow$  gradient provided by client *i*; 7 Clip gradient:  $\hat{g}_i \leftarrow g_i * \min(1, \frac{C}{\|g_i\|})$ ; 8  $\tilde{g}_t \leftarrow \frac{1}{L} \left( \sum_i \hat{g}_i + \mathcal{N}(0, z^2 C^2 \mathbf{I}) \right);$ 9



# Will Adaptive Clipping leak any more privacy?

NO

- Because of the Post processing Property of DP
  - If F(X) satisfies  $\epsilon$ -differential privacy
  - Then for any (deterministic or randomized) function g, g(F(X)) satisfies  $\epsilon$ -differential privacy

Algorithm 2: Adaptive Cilpping **Input:** Clients set  $\mathcal{T}$ , noise multiplier z, user sample size L, Learning round T, Window size W Output: Clipping Threshold C 1 Initialize  $C = C_0$ ; <sup>2</sup> while and  $t \leq T$  do Randomly Sample L clients  $\mathcal{T}_s \leftarrow \text{sample}(\mathcal{T}, L);$ 3 if t > W then 4  $C \leftarrow f([\tilde{g}_{t-W}, ..., \tilde{g}_{t-1}], k)$ 5 —— The DP version Gradients for  $i \in \mathcal{T}_s$  do 6  $g_i \leftarrow$  gradient provided by client *i*; 7 Clip gradient:  $\hat{g}_i \leftarrow g_i * \min(1, \frac{C}{\|g_i\|})$ ; 8  $\tilde{g}_t \leftarrow \frac{1}{L} \left( \sum_i \hat{g}_i + \mathcal{N}(0, z^2 C^2 \mathbf{I}) \right);$ 9



# Differentially private Meta-learning

 The history of *Differentially Private* version gradients guides the current clipping.





# **Two Algorithms**

- Two threat models
  - DP-AGR for threat model 1 where server is trusted, clients are honest-but-curious
  - DP-AGRLR for threat model 2 where the server is not trusted, and clients are honest-but-curious



| Algorithm 3: DP-AGRLR (Client Side)                                                                                           |     |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Input</b> : Current global model $\Theta$ , local data $\mathcal{D}$ , DP parameter                                        |     |
| $(\epsilon_0, \delta_0), C_0, z_0$                                                                                            |     |
| <b>Output:</b> gradient <i>g</i>                                                                                              |     |
| 1 Function $g =$ Base-Model-Train( $\Theta, \mathcal{D}^s, \mathcal{D}^q$ ):                                                  |     |
| <sup>2</sup> Initialize base-model: $\theta \leftarrow \Theta$ ;                                                              |     |
| <sup>3</sup> Split local data $\mathcal{D}^s, \mathcal{D}^q \leftarrow \mathcal{D};$                                          |     |
| 4 $z_0 \leftarrow \text{compute\_noise}(\epsilon_0, \delta_0, *args)$                                                         |     |
| 5 for $(x_i, y_i) \in \mathcal{D}^s$ do                                                                                       |     |
| 6 record-level gradient: $g_i \leftarrow \nabla_{\theta} \mathcal{L}(\theta, x_i)$ ;                                          |     |
| 7 Clip gradient: $\hat{g}_i \leftarrow g_i * \min(1, \frac{C_0}{\ g_i\ })$ ;                                                  | ing |
| $s  \tilde{g} \leftarrow \frac{1}{ \mathcal{D}^s } \left( \sum_i \hat{g}_i + \mathcal{N}(0, (z_0 C_0)^2 \mathbf{I}) \right);$ |     |
| 9 update base-model: $\theta \leftarrow \theta - \eta_1 \tilde{g}$ ;                                                          | ),  |
| 10 for $(x_i, y_i) \in \mathcal{D}^q$ do                                                                                      |     |
| 11 record-level gradient: $g_i \leftarrow \nabla_{\theta} \mathcal{L}(\theta, x_i)$ ;                                         |     |
| 12 clip gradient: $\hat{g}_i \leftarrow g_i * \min(1, \frac{C_0}{\ g_i\ })$ ;                                                 |     |
| 13 $g \leftarrow \frac{1}{ \mathcal{D}^q } \left( \sum_i \hat{g}_i + \mathcal{N}(0, (z_0 C_0)^2 \mathbf{I}) \right).$         |     |
|                                                                                                                               |     |

### **Experimental Setting**

- Settings:
  - Image Datasets: Omniglot, CIFAR-FS, Mini-ImageNet
  - Client Number: 400,000
  - Clients in each learning round: 1500
  - Each client has 30 data record.
  - Meta-learning algorithm: MAML.

#### • Code:

- Our code is available at <u>https://github.com/ning-wang1/DPFedMeta</u>.
- Code Evaluated





### **Evaluation: Adaptive Clipping**

#### • Ours Vs AQC Vs Constant



All other settings are the same, only change the clipping method.



### **Evaluations: DP-AGRLR**

• More accurate ML model with much lower privacy budget

- DP-AGR (ours) achieves (1.5, 10<sup>-6</sup>)-DP;
- DP-AGRLR (ours) achieves (2.5, 10<sup>-5</sup>)-DP for record-level privacy

■ Baseline achieves (9.5, 10<sup>-3</sup>)-DP



Model Accuracy of 5-way 5-shot learning in the Omniglot dataset.



# Summary

- Differentially private federated meta-learning architecture.
- Design an adaptive gradient clipping method to conserve the privacy budget and improve accuracy.
- Provide two algorithms, DP-AGR and DP-AGRLR, to deal with different privacy requirements..



# Thank You! Q&A