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l Next word suggestion of Gboard.
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Our data is used by AI applications!
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Our data is used by AI applications!
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What’s Federated Learning?



l The model parameters are open to the server directly and to other 
clients indirectly.

l Can attacker infer data from model?
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Is Data Privacy fully Protected by FL?

* Figure from Fredrikson, Matt, Somesh Jha, and Thomas Ristenpart. "Model inversion attacks that exploit 
confidence information and basic countermeasures."

‘John Smith’

Q: How likely is this picture to be `John Smith’?

A: Confidence=0.001

manipulate

Training Data is Memorized by the Model

Revise to increase confidence

Revise to increase confidence

A: Confidence=0.9

A: Confidence=0.99



l FL cannot guarantee the training data privacy.
l State-of-the-art Inference Attack

n Membership inference attack [1,2]
n Model Inversion Attack [3]
n Attribute Inference Attack [4]

6

Privacy Attack: Inference Attack
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l Problem
n FL can protect data privacy to some extend.
n Attackers are still capable to infer training data while knowing the
model parameters.

n Differential Privacy (DP) is a tool for privacy protection, but it
harms the accuracy a lot.

n Mobile used data size can be small.
l Goal

n Provide rigorous privacy guarantee for users by incorporate DP.
n Maintain a good trade-off between privacy and accuracy.
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Problem and Goal of this Paper



l What is the inference attack in a database?
n Use the statistical/aggregate queries that are authorized to gain
information that are not authorized.

l Example: Exam score database.
n Tuple: (student_id, score)
n Average score on an exam is a query everyone is allowed to run.
n Attacker wants to find the exact score of some student.
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DP preliminary: Inference Attack on Databases

Inference attack sometimes requires some additional external information.
e.g., Attacker knows Alice took the exam late.

Attacker get
average score before some date & average score after such date.

It is easy to get the score of Alice.



l What’s Adjacent database?
n Two databases only have one record difference.
n E.g., a database with Alice data in, a database without Alice Data.

l Once attackers have access to the adjacent database, it can launch 
inference attack.
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DP preliminary: Adjacent Databases

How to solve the inference attack?



l DP allows to learn useful information of the population
without leaking individual privacy.
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Differential Privacy (DP)

𝜺, 𝜹 −differential privacy: A random mechanism ℳ:𝒟 → ℛ satisfies 
𝜀, 𝛿 −differential privacy if for any two adjacent inputs (𝑑, 𝑑! ∈ 𝒟) and for any 

subset of outputs 𝑆 ∈ ℛ it holds that: Pr[ℳ 𝑑 = 𝑆] ≤ 𝑒! Pr ℳ 𝑑" = S + 𝛿

Bob’s Data

Add 
Randomness

Q1: Answer 1
Q2: Answer 2

…

Add 
Randomness

Q1: Answer 1
Q2: Answer 2

…

Figure out 
Bob’s data

DP procedure
Answers are similar



l Adding Randomness
n Gaussian Noise
n Laplace Noise 
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Key Step of DP

Gaussian Noise Laplace Noise



l Problem: low accuracy
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Differentially private federated Learning

Accuracy
dramatically 
decreases!

Continual Training does help.
But it requires Enough Data & Training Power/Time



l Federated Learning
n Deal with few-shot problem.
n Fast adaptation/customization.
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To cope with small size of local data

Mobile client

Trained model

Support set

Query set

Training

Task 1

Task 2

…

Meta-model

Aggregator

à Federated Meta-Learning

Learn common knowledge from various tasks 
to enable quick learning for new/unseen tasks.



l Central server is trusted, clients are honest-but-curious.
l Both central server and clients are honest-but-curious.
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Two Threat Models



l Adding noise
n The noise should be proportional to the largest gradient.
n To avoid too large noise, we should clip the gradient.
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DP in Federated Meta-learning

Mobile client
6
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l Adaptive Clipping
n Naïve constant clipping maintain a fixed clipping threshold 𝐶. The noise 

will be:  𝑘 ∗ 𝐶.
n Adaptive clipping: change the threshold 𝐶 adaptively.
n Why adaptive clipping better?
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Our Proposal

The gradients will decrease during 
the course of training.

We can change the threshold 𝑪
according to the gradient change.



l We cannot use the true gradient scale to adaptively decide 𝐶.
l Our proposal: determine 𝐶 by using historical DP gradients in a window of size

𝑊:
𝐶"#$ = 𝑓 [ 4𝑔$, … , 4𝑔" , 𝑘)
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Adaptive Clipping

The DP version Gradients



l NO
l Because of the Post processing Property of DP
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Will Adaptive Clipping leak any more privacy?

The DP version Gradients
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Differentially private Meta-learning

l The history of Differentially Private version gradients guides
the current clipping.

Mobile client
6
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Trained model Gradient

…
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Gradient
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Gaussian Noise

Average
DP gradient

Global model

Adaptively adjust
clipping threshold C



l Two threat models
n DP-AGR for threat model 1 where server is trusted, clients are
honest-but-curious

n DP-AGRLR for threat model 2 where the server is not trusted, and
clients are honest-but-curious
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Two Algorithms

clipping

Adding Noise



l Settings:
n Image Datasets: Omniglot, CIFAR-FS, Mini-ImageNet
n Client Number: 400,000
n Clients in each learning round: 1500
n Each client has 30 data record.
n Meta-learning algorithm: MAML.

l Code:
n Our code is available at https://github.com/ning-wang1/DPFedMeta.
n Code Evaluated
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Experimental Setting

https://github.com/ning-wang1/DPFedMeta


l Ours Vs AQC Vs Constant
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Evaluation: Adaptive Clipping

All other settings are the same, only
change the clipping method.



l More accurate ML model with much lower privacy budget
n DP-AGR (ours) achieves 1.5, 10!" -DP;
n DP-AGRLR (ours) achieves 2.5, 10!# -DP for record-level privacy
n Baseline achieves 9.5, 10!$ -DP

23

Evaluations: DP-AGRLR

Model Accuracy of 5-way 5-shot learning in the Omniglot dataset.  



l Differentially private federated meta-learning architecture.

l Design an adaptive gradient clipping method to conserve the privacy
budget and improve accuracy.

l Provide two algorithms, DP-AGR and DP-AGRLR, to deal with different
privacy requirements..
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Summary
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Thank You!
Q&A


