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• 6,000 severe incidents reported in the past decade
• conducted in multiple stages, stealthy
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Advanced Persistent Threat (APT)



• Security operations center (SOC) is drowning in 
cybersecurity alerts

• more than half see more than 10,000 alerts per day
• many alerts are false positives or even trivial true positives
• analysts spend ~30 minutes to investigate each alert

Alert Flooding
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• Security operations center (SOC) is drowning in 
cybersecurity alerts

• fail to respond to true threats within the “golden hour”

Alert Flooding

Efficient, Automated Alert Triage!
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Alert

Alert

• Attack causality analysis 
• dependency explosion: a large graph around an alert

Automated Alert Triage
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• Attack causality analysis 
• dependency explosion: a large graph around an alert
• alert flooding: many alerts
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Automated Alert Triage
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• Attack causality analysis 
• Computational resources are limited
• Two critical assumptions

• scaling up each alert triage is the only solution
• relying on threat ontologies
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Limitations of Existing Approaches
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RAPID: scales out the alert processing capability in 
enterprises without relying on a threat ontology

• Attack causality analysis
• Computational resources are limited 
• Two critical assumptions

• scaling up each alert triage is the only solution
• relying on threat ontologies

• Our observations
• scaling out with collaborative alert triage is important
• less dependent on presumed attack patterns

Limitations of Existing Approaches
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● Introduction

● System Overview

● Interruptible Priority-based Tracking

● Evaluation

● Conclusion

Outline



Non-collaborative Alert Triage
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RAPID: Collaborative Alert Triage
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• Idea: cluster the causally connected alerts to improve 
efficiency
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Why Collaborative Alert Triage?

High-profile 
Host

Send to Attacker’s 
SiteDownload a Malicious 

Script 
Steal Sensitive 

Files
Move to a Low-

profile Host

Low-profile 
Host

Alert 2

Alert 1Attacker

• Triage task deduplication
• overlap between individual alert triage tasks can be avoided

• sequential attack steps in different stages
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Why Collaborative Alert Triage?

High-profile 
Host

Send to Attacker’s 
SiteDownload a Malicious 

Script 
Steal Sensitive 

Files
Move to a Low-

profile Host

Low-profile 
Host

Alert 2Attacker

• Triage task deduplication
• overlap between individual alert triage tasks can be avoided

• sequential attack steps in different stages
• parallel attack steps in the same stage

Alert 1
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Why Collaborative Alert Triage?

• Triage task deduplication
• Cross-task prioritization: non-collaborative

• later tasks starve if computational resources are occupied
• dropped tasks are not resumed even if other tasks are later 

diagnosed as less important
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Why Collaborative Alert Triage?

• Triage task deduplication 
• Cross-task prioritization

• re-allocate computational resources to most critical alerts
• adapt alert prioritization to newly learned context

• true alerts can be initially assigned with low severity
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Why Collaborative Alert Triage?
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Densely connected alerts

Touches sensitive files

Alert 
1

Freshness

• Triage task deduplication
• Cross-task prioritization

• re-allocate computational resources to most critical alerts
• adapt alert prioritization to newly learned context

• re-assess alert priorities as investigations proceed
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System Overview
Output: Clustered Alerts

Input: Isolated Alerts

Input: Audit Logs

Endpoint Monitors
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System Overview
Dependency 
Tracking Workers

Task Manager

Output: Clustered Alerts

Input: Isolated Alerts

Input: Audit Logs

Endpoint Monitors
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● Introduction

● System Overview

● Interruptible Priority-based Tracking

● Evaluation

● Conclusion

Outline



Connect the Alerts: Naïve Approach

A1

A2

1. dequeue 
new alert

2. find connections 
to all previous alerts

Shared Alert Queue

A3
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Problem with Complete Computation

• Inefficiency
• reprocessing

• grey nodes twice in 
connect(A2, A1), 
connect(A3, A2)

• batch processing
• connect(A2, A1), 

connect(A3, A2) are 
bundled in a session

A3

A1

A2
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Our solution: Partial Computation

A3

A1

A2

• Sub-problems
• each alert tracks causal 

dependencies backwards
• store intermediate entities 

as waypoints

• Waypoints
• last event timestamp
• shortest paths from 

entities to alerts
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Our solution: Partial Computation

A1

A2

A3

• Sub-problems
• each alert tracks causal 

dependencies backwards
• store intermediate 

entities as waypoints

• Waypoints
• last event timestamp
• shortest paths from 

entities to alerts

• Paths
• hit overlapped waypoints
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Each Alert: Priority-based Tracking

A1

A2

A3

• Deduplication: equips a new alert with information from 
triage of previous alerts

• connect to the closest waypoints
• merge most triage tasks
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Each Alert: Priority-based Tracking

• Deduplication: equips a new alert with information from 
triage of previous alerts

• Prioritization: incorporates contextual information into alert 
priorities

• increases an aggregate priority
• suspicious neighbors
• connected severe alerts
• new

26



Alerts: Interruptible Priority-based Tracking

• Re-allocate resources if a more critical alert is found?

• Traditionally, no control over the task progress: 
kills an old triage task to switch to another alert

• no partial results from the killed task
• computation resources wasted when no alerts
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• Re-allocate resources if a more critical alert is found?

• Our design: task manager dynamically prioritizes alert 
triage tasks

• task state <unprocessed entities, priority, time>

• Interruptible alert triage tasks
• pause a running old task 
• save the task state
• resume the task later

• Results harvested continuously
• partial tracking results for analytics

Alerts: Interruptible Priority-based Tracking
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● System Overview

● Interruptible Priority-based Tracking
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● Conclusion
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Experiment Setup

• Adversarial engagement of DARPA Transparent 
Computing (TC) program

• 1TB data including 411m events on 7 hosts over 2 weeks
• FreeBSD, Linux, and Windows

• 300k alerts from real detectors

• Three representative attack cases
• attacks from red teams
• ground truth collected as critical events (CE)
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Case Study: Firefox Extension Attack

A1-A6 of medium severity

many shared  
normal activities

A compromised Firefox password manager extension drops a malicious 
script, exfiltrates data and performs port scanning
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Case Study: Firefox Extension Attack

• We avoid reprocessing alerts and prioritize 
densely connected alerts over normal activities

Merge and escalate A1-A6

Deduplicate 
investigations of 
shared  normal 
activities
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Results: Efficiency

• Deduplication improves space efficiency by up to three 
orders of magnitude

Thousands of alert triage 
tasks quickly merge into 
tens of tasks via the 
waypoint mechanism 33



Results: Accuracy

• Prioritization discovers more attack traces in causality 
analysis within the time limit

Baseline:
• ~10% missing for Firefox Extension
• ~20% missing for Vulnerable Nginx
• ~40% missing for Phishing Email

Rapid: 
• 0% missing for all 34



Results: Time Effectiveness

• Prioritization accelerates the discovery of attack traces by 
up to two orders of magnitude

Baseline:
• > one hour for both

Rapid: 
• 94s for Firefox 

Extension
• 22s for Nginix
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Conclusion

• Proposed context-aware alert investigation platform
○ with causality analysis capabilities
○ without relying on threat ontology

• Evaluated on a 1TB dataset from DARPA TC program

Thank you!


