
RAPID: Real-Time Alert Investigation
with Context-aware Prioritization for
Efficient Threat Discovery

Yushan Liu, Xiaokui Shu, Yixin Sun, Jiyong Jang, Prateek Mittal
Princeton University, IBM Research, University of Virginia

This project was sponsored by Air Force Research Laboratory
(AFRL) and Defense Advanced Research Agency (DARPA) under
the award number FA8650-15-C-7561.The views, opinions, and/or
findings contained in this article are those of the authors and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.
This project was also supported in part by the Commonwealth
Cyber Initiative.
We would like to thank the reviewers and our shepherd for their
valuable feedback, and the analysts who participated in our
survey.

2

• 6,000 severe incidents reported in the past decade
• conducted in multiple stages, stealthy

3

Advanced Persistent Threat (APT)

• Security operations center (SOC) is drowning in
cybersecurity alerts

• more than half see more than 10,000 alerts per day
• many alerts are false positives or even trivial true positives
• analysts spend ~30 minutes to investigate each alert

Alert Flooding

4

• Security operations center (SOC) is drowning in
cybersecurity alerts

• fail to respond to true threats within the “golden hour”

Alert Flooding

Efficient, Automated Alert Triage!

5

Alert

Alert

• Attack causality analysis
• dependency explosion: a large graph around an alert

Automated Alert Triage

6

• Attack causality analysis
• dependency explosion: a large graph around an alert
• alert flooding: many alerts

Alert
1

Alert
1

Alert
2

Alert
3

Alert
2

Alert 3

Automated Alert Triage

7

• Attack causality analysis
• Computational resources are limited
• Two critical assumptions

• scaling up each alert triage is the only solution
• relying on threat ontologies

Alert
1

Alert
1

Alert
2

Alert
3

Alert
2

Alert 3

Limitations of Existing Approaches

8

RAPID: scales out the alert processing capability in
enterprises without relying on a threat ontology

• Attack causality analysis
• Computational resources are limited
• Two critical assumptions

• scaling up each alert triage is the only solution
• relying on threat ontologies

• Our observations
• scaling out with collaborative alert triage is important
• less dependent on presumed attack patterns

Limitations of Existing Approaches

9

● Introduction

● System Overview

● Interruptible Priority-based Tracking

● Evaluation

● Conclusion

Outline

Non-collaborative Alert Triage

Alert
1

Alert
1

Alert
2

Alert
3

Alert
2

Alert 3

11

RAPID: Collaborative Alert Triage

Alert
1

Alert
2

Alert
3

Alert
1

Alert
2

Alert 3

• Idea: cluster the causally connected alerts to improve
efficiency

12

Why Collaborative Alert Triage?

High-profile
Host

Send to Attacker’s
SiteDownload a Malicious

Script
Steal Sensitive

Files
Move to a Low-

profile Host

Low-profile
Host

Alert 2

Alert 1Attacker

• Triage task deduplication
• overlap between individual alert triage tasks can be avoided

• sequential attack steps in different stages

13

Why Collaborative Alert Triage?

High-profile
Host

Send to Attacker’s
SiteDownload a Malicious

Script
Steal Sensitive

Files
Move to a Low-

profile Host

Low-profile
Host

Alert 2Attacker

• Triage task deduplication
• overlap between individual alert triage tasks can be avoided

• sequential attack steps in different stages
• parallel attack steps in the same stage

Alert 1

14

Why Collaborative Alert Triage?

• Triage task deduplication
• Cross-task prioritization: non-collaborative

• later tasks starve if computational resources are occupied
• dropped tasks are not resumed even if other tasks are later

diagnosed as less important

15

Why Collaborative Alert Triage?

• Triage task deduplication
• Cross-task prioritization

• re-allocate computational resources to most critical alerts
• adapt alert prioritization to newly learned context

• true alerts can be initially assigned with low severity

16

Why Collaborative Alert Triage?

Alert
1

Alert
2

Alert 3

Alert
1

Densely connected alerts

Touches sensitive files

Alert
1

Freshness

• Triage task deduplication
• Cross-task prioritization

• re-allocate computational resources to most critical alerts
• adapt alert prioritization to newly learned context

• re-assess alert priorities as investigations proceed

17

System Overview
Output: Clustered Alerts

Input: Isolated Alerts

Input: Audit Logs

Endpoint Monitors

18

System Overview
Dependency
Tracking Workers

Task Manager

Output: Clustered Alerts

Input: Isolated Alerts

Input: Audit Logs

Endpoint Monitors

19

● Introduction

● System Overview

● Interruptible Priority-based Tracking

● Evaluation

● Conclusion

Outline

Connect the Alerts: Naïve Approach

A1

A2

1. dequeue
new alert

2. find connections
to all previous alerts

Shared Alert Queue

A3

21

Problem with Complete Computation

• Inefficiency
• reprocessing

• grey nodes twice in
connect(A2, A1),
connect(A3, A2)

• batch processing
• connect(A2, A1),

connect(A3, A2) are
bundled in a session

A3

A1

A2

22

Our solution: Partial Computation

A3

A1

A2

• Sub-problems
• each alert tracks causal

dependencies backwards
• store intermediate entities

as waypoints

• Waypoints
• last event timestamp
• shortest paths from

entities to alerts

23

Our solution: Partial Computation

A1

A2

A3

• Sub-problems
• each alert tracks causal

dependencies backwards
• store intermediate

entities as waypoints

• Waypoints
• last event timestamp
• shortest paths from

entities to alerts

• Paths
• hit overlapped waypoints

24

Each Alert: Priority-based Tracking

A1

A2

A3

• Deduplication: equips a new alert with information from
triage of previous alerts

• connect to the closest waypoints
• merge most triage tasks

25

Each Alert: Priority-based Tracking

• Deduplication: equips a new alert with information from
triage of previous alerts

• Prioritization: incorporates contextual information into alert
priorities

• increases an aggregate priority
• suspicious neighbors
• connected severe alerts
• new

26

Alerts: Interruptible Priority-based Tracking

• Re-allocate resources if a more critical alert is found?

• Traditionally, no control over the task progress:
kills an old triage task to switch to another alert

• no partial results from the killed task
• computation resources wasted when no alerts

27

• Re-allocate resources if a more critical alert is found?

• Our design: task manager dynamically prioritizes alert
triage tasks

• task state <unprocessed entities, priority, time>

• Interruptible alert triage tasks
• pause a running old task
• save the task state
• resume the task later

• Results harvested continuously
• partial tracking results for analytics

Alerts: Interruptible Priority-based Tracking

28

● Introduction

● System Overview

● Interruptible Priority-based Tracking

● Evaluation

● Conclusion

Outline

Experiment Setup

• Adversarial engagement of DARPA Transparent
Computing (TC) program

• 1TB data including 411m events on 7 hosts over 2 weeks
• FreeBSD, Linux, and Windows

• 300k alerts from real detectors

• Three representative attack cases
• attacks from red teams
• ground truth collected as critical events (CE)

30

Case Study: Firefox Extension Attack

A1-A6 of medium severity

many shared
normal activities

A compromised Firefox password manager extension drops a malicious
script, exfiltrates data and performs port scanning

31

Case Study: Firefox Extension Attack

• We avoid reprocessing alerts and prioritize
densely connected alerts over normal activities

Merge and escalate A1-A6

Deduplicate
investigations of
shared normal
activities

32

Results: Efficiency

• Deduplication improves space efficiency by up to three
orders of magnitude

Thousands of alert triage
tasks quickly merge into
tens of tasks via the
waypoint mechanism 33

Results: Accuracy

• Prioritization discovers more attack traces in causality
analysis within the time limit

Baseline:
• ~10% missing for Firefox Extension
• ~20% missing for Vulnerable Nginx
• ~40% missing for Phishing Email

Rapid:
• 0% missing for all 34

Results: Time Effectiveness

• Prioritization accelerates the discovery of attack traces by
up to two orders of magnitude

Baseline:
• > one hour for both

Rapid:
• 94s for Firefox

Extension
• 22s for Nginix

35

Conclusion

• Proposed context-aware alert investigation platform
○ with causality analysis capabilities
○ without relying on threat ontology

• Evaluated on a 1TB dataset from DARPA TC program

Thank you!

