
Designing a Provenance
Analysis for SGX Enclaves

Flavio Toffalini, EPFL
Mathias Payer, EPFL
Jianying Zhou, SUTD

Lorenzo Cavallaro, UCL

1

SGX protects the execution of software in an

enclave (blue execution)

But Enclave software may be vulnerable to

memory errors

-> Chain code gadgets to execute arbitrary

malicious computations (red execution)

Problem Description: Memory Corruptions in SGX

2

User-space

Kernel-space

Enclave

??
Payload?

Challenges

User-space

Kernel-space

Enclave

Payload?? ?

3

What do we need? A provenance analysis!

But SGX does not allow inspection :(

Challenges:

1) Attack-resistant tracing

2) Secure streaming

3) A model to recognize intrusion

Contribution

User-space

Kernel-space

Enclave

? Payload

? ?

4

SgxMonitor: a provenance analysis for SGX!

1) Something to trace the enclave (securely)

2) A model to identify the attack

Design

Model

Target Enclave
T

(under attack)

Monitor Enclave
M

Remote Entity R

Runtime Information

Hey M! Is T still OK?

Target Enclave
T

Extract correct
behavior➊

➋

➌

Offline Analysis Online Verification

5

Design: Tracing

int fun(int a) {

 …

 // trace the indirect jump to the caller

 trace(__builtin_return_address(0));

 return 0;

}

Attack-resistant tracing

Gist: every trace() sends an encrypted msg AND produces a new private_key

If an adversary leaks a key, it cannot be used to retrieve previous keys

key_t private_key;

void trace(uint8_t addr) {

 msg_t msg = encrypt(addr, private_key);

 send_to_monitor(msg);

 private_key = hash(private_key);

}

Monitor Enclave
M➊

➋

➌

6

Design: Streaming

Secure streaming

Gist: the messages are chained, dropping one reveals an attack.
Messages have same size, so no information of their content.

Monitor Enclave
M

Target Enclave
T

Runtime Information

enc(k4)enc(k3)enc(k2)enc(k1)

k1 = init_synk k2 = hash(k1) k3 = hash(k2) k4 = hash(k3)

7

In the paper, a detailed security discussion

State
(global variables)

Model

Enclaves are stateful -> they use global variables/structs

Assuming we know what global structures I need to protect

(global_struct,
create)

Enclave
initialization/deinitialization
phase ...

Ø

Transactions
(execution flows)

(global_struct,
destroy)

8

Extracted with a combination of
symex+static analysis.
Static analysis used only as fallback
if symex reaches timeout.

➊

➋

➌

Evaluation: Overhead

Deployed over StealthDB (PostgreSQL plugin w/ SGX). Not that bad…

Acceptable overhead

9

Evaluation: Security

- Tried against SnakeGX1, an SGX malware -> stopped!

- Tested mimicry attacks and shadow stack integrity -> stopped!

False positive or false negative observed: none

10

[1] SnakeGX: a sneaky attack against SGX Enclaves (ACNS 2021)

- Runtime tracing mechanism for SGX enclaves
- Without introducing new attacks surface

- Model SGX enclaves as a FSM (including global states)
- Using symex+static to extract the model

- Evaluation
- Macrobenchmarks show limited overhead

- Model identifies and describes the attacks (no false positives observed)

11

https://github.com/tregua87/sgxmonitor-artifact

Takeaway!

backup…

12

SGX - Background

User-space

Kernel-space

Enclave

Intel Software Guard eXtention (SGX)

- Enclaves: isolated memory regions in
user-space

- Enclaves cannot interact with ring-0
software (i.e., no syscall)

- Enclaves can write/read in user-space
- User- and kernel-space cannot write/read

the enclave space

How is this enforced?
CPU/MMU/Microcode checks
OS-independent design

13

Problem description - memory corruptions in SGX

User-space

Kernel-space

Enclave

Payload

Correct execution

Hijacked execution

?? ?Is
it

ru
nnin

g

well?

Is it under

attack?

14

I want something like Intel PT!

But SGX does not allow inspection :(

Challenges:

1) Attack-resistant tracing

2) Secure streaming

3) Not amplify side channels

Tracing: Challenges

Target Enclave
T

(under attack)

Monitor Enclave
M

Runtime Information

15

Model Extraction

How do I extract the model?

Gist: we extract CFG from every function by using static analysis and symbolic execution

More model/analysis details in the paper

Target Enclave
T

Model

Extract correct behavior

angr

static
analysis

timeout
?

16

Evaluation - overhead

Macro-benchmarks show
a plateau, thus not
affecting final user
experience

Deployed over VLC (manual porting) and SGX-Biniax (an SGX game). Not that bad…

17

Evaluation - model precision

Use Case # functions % CFG explored # functions static

Contact 71 96.4% 1

libdvdcss 56 91.4% 9

StealthDB 44 96.6% 0

SGX-Biniax2 49 91.6% 4

Unit-test 17 94.0% 0

Symex explores the majority of the functions
We fallback to static analysis only for few cases

18

Design: Is it Secure?

Does SgxMonitor amplify side channels?

We conduct this analysis.

We recall:
(i) all messages have same size, therefore the size does reveal
(ii) the target enclave changes its key for each message transmitted, thus leaking keys is useless

Leak enclave code

We assume the code is already
available. Not a problem.

Leak runtime data

Adding dummy packets.
(Only for critical variables.)

19

