Designing a Provenance Analysis for SGX Enclaves

Flavio Toffalini, EPFL Mathias Payer, EPFL Jianying Zhou, SUTD Lorenzo Cavallaro, UCL

SINGAPORE UNIVERSITY OF FECHNOLOGY AND DESIGN

Problem Description: Memory Corruptions in SGX

SGX protects the execution of software in an enclave (blue execution)

But Enclave software may be vulnerable to memory errors

-> Chain code gadgets to execute arbitrary malicious computations (red execution)

Challenges

What do we need? A provenance analysis!

But SGX does not allow inspection :(

Challenges:

1) Attack-resistant tracing

2) Secure streaming

3) A model to recognize intrusion

Contribution

SgxMonitor: a provenance analysis for SGX!

1) Something to trace the enclave (securely)

2) A model to identify the attack

Design

Design: Tracing

Attack-resistant tracing

Gist: every trace() sends an encrypted msg AND produces a new private_key

If an adversary leaks a key, it cannot be used to retrieve previous keys

Design: Streaming

Secure streaming

Gist: the messages are chained, dropping one reveals an attack. Messages have same size, so no information of their content.

Model

Enclaves are stateful -> they use global variables/structs

Assuming we know what global structures I need to protect

Evaluation: Overhead

Deployed over StealthDB (PostgreSQL plugin w/ SGX). Not that bad...

Evaluation: Security

- Tried against SnakeGX¹, an SGX malware -> stopped!
- Tested mimicry attacks and shadow stack integrity -> **stopped!**

False positive or false negative observed: none

[1] SnakeGX: a sneaky attack against SGX Enclaves (ACNS 2021)

Takeaway!

- Runtime tracing mechanism for SGX enclaves
 - Without introducing new attacks surface
- Model SGX enclaves as a FSM (including global states)
 - Using symex+static to extract the model
- Evaluation
 - Macrobenchmarks show limited overhead
 - Model identifies and describes the attacks (no false positives observed)

https://github.com/tregua87/sgxmonitor-artifact

backup...

SGX - Background

Intel Software Guard eXtention (SGX)

- Enclaves: isolated memory regions in user-space
- Enclaves cannot interact with ring-0 software (i.e., no syscall)
- Enclaves can write/read in user-space
- User- and kernel-space cannot write/read the enclave space

How is this enforced? CPU/MMU/Microcode checks OS-independent design

EP5

Problem description - memory corruptions in SGX

EPFL

Tracing: Challenges

I want something like Intel PT!

But SGX does not allow inspection :(

Challenges:

1) Attack-resistant tracing

2) Secure streaming

3) Not amplify side channels

Model Extraction

How do I extract the model?

Gist: we extract CFG from every function by using static analysis and symbolic execution

More model/analysis details in the paper

Evaluation - overhead

Deployed over VLC (manual porting) and SGX-Biniax (an SGX game). Not that bad...

EPFL

Evaluation - model precision

Use Case	# functions	% CFG explored	# functions static
Contact	71	96.4%	1
libdvdcss	56	91.4%	9
StealthDB	44	96.6%	0
SGX-Biniax2	49	91.6%	4
Unit-test	17	94.0%	0

Symex explores the majority of the functions We fallback to static analysis only for few cases

Design: Is it Secure?

Does SgxMonitor amplify side channels?

We conduct this analysis.

We recall:

(i) all messages have same size, therefore the size does reveal

(ii) the target enclave changes its key for each message transmitted, thus leaking keys is useless

