
A Qualitative Evaluation
of Reverse Engineering
Tool Usability
James Mattei
Tufts Security & Privacy Lab

Overview

1. Background and Motivations

2. The Data

3. Qualitative Coding

4. Results

5. Discussion

2

1.
Background and
Motivations

3

Vulnerability discovery is important but difficult

◎ Identifying vulnerabilities in
code is predominantly a manual
process

◎ The process is slow and time
consuming
○ Reverse engineers (RE) take

on average 40 minutes to
review ~150 lines of code
[Yakdan, 2016]

4
Example Call Graph -
https://i.stack.imgur.com/Mg9mR.png

Train more reverse engineers
◎ Improve the process of

educating new RE

How do we improve this problem?

Help current engineers work
more efficiently
◎ Identify what tools are

usable and how REs interact
with them

5

Train more reverse engineers
◎ Improve the process of

educating new RE

How do we improve this problem?

Help current engineers work
more efficiently
◎ Identify what tools are

usable and how REs interact
with them

6

Evaluate what plugins REs are creating

RQ1 What are current interaction modalities for RE tools?
● Determine how REs interact with their tools
● Find out what interaction modalities are associated with

expected usability

RQ2 Do they fit the REʼs processes and mental models?
● Do RE tools follow usability guidelines?

7

2.
The Data

8

Identify what frameworks SEs are using

9

Sourcing the user created plugins

◎ Edge of the Art in
Vulnerability Research
-Two Six Labs

◎ Google
◎ Twitter
◎ Github

10

Ghidra 75 plugins

IDA 204 plugins

Binary Ninja 78 plugins

Radare2 50 plugins

Standalone 59 tools

Total 466 tools

Exclusion Criteria

11

● Utility focused tools with
functionality outside the RE
mental model

● Tools which add support for
additional instruction set
architectures

Exclusion Criteria

12

Youʼre not too good
at this, are you?

● Utility focused tools with
functionality outside the RE
mental model

● Tools which add support for
additional instruction set
architectures

Exclusion Criteria

13

Youʼre not too good
at this, are you?

● Utility focused tools with
functionality outside the RE
mental model

● Tools which add support for
additional instruction set
architectures

Final totals

14

Ghidra 75 plugins (56 used)

IDA 204 plugins (101 used)*

Binary Ninja 78 plugins (48 used)

Radare2 50 plugins (34 used)

Standalone 59 tools (50 used)

Total 466 tools (289 used)

3.
Qualitative Coding

15

Evaluate what plugins REs are creating

RQ1 What are current interaction modalities for RE tools?
● Determine how REs interact with their tools
● Find out what interaction modalities are associated with

expected usability

RQ2 Do they fit the REʼs processes and mental models?
● Do RE tools follow usability guidelines?

16

Previous work: Reverse Engineering Process

An Observational Investigation of Reverse Engineersʼ Processes. [Votipka, 2020] 17

Establish a broad view of the program, develop initial
hypotheses and questions for further investigation.

Review relevant sub-components to refine
hypotheses and questions

Test hypotheses with in-depth
static / dynamic analysis

Develop codebook to classify plugins

18

Codebook Entry Potential Values Significance

Analysis Phase (G1) Overview / Subcomponent/
Experimentation

Which analysis phase is the intended use of the
plugin (RQ1, RQ2)

Input Content (G2) Binary file/ Selected area/ etc. What input options does the tool have (RQ1)

Output Content (G2) Function signatures, Emulated
code, etc.

What information is the plugin presenting (RQ1)

Output Method (G2) Code viewer, Console log, etc. How is the information presented (RQ1)

Stat. & Dyn. (G3) Yes / No Does the tool incorporate different contexts
(RQ2)

User Spec (G4) Yes / No Does the tool allow more user control (RQ2)

Readability (G5) Yes / No Does the tool make code comprehension easier
(RQ2)

Functionality Type Scanning, Fuzzing, etc. What are the tools used for (RQ1, RQ2)

Develop codebook to classify plugins

19

Codebook Entry Potential Values Significance

Analysis Phase (G1) Overview / Subcomponent/
Experimentation

Which analysis phase is the intended use of the
plugin (RQ1, RQ2)

Input Content (G2) Binary file/ Selected area/ etc. What input options does the tool have (RQ1)

Output Content (G2) Function signatures, Emulated
code, etc.

What information is the plugin presenting (RQ1)

Output Method (G2) Code viewer, Console log, etc. How is the information presented (RQ1)

Stat. & Dyn. (G3) Yes / No Does the tool incorporate different contexts
(RQ2)

User Spec (G4) Yes / No Does the tool allow more user control (RQ2)

Readability (G5) Yes / No Does the tool make code comprehension easier
(RQ2)

Functionality Type Scanning, Fuzzing, etc. What are the tools used for (RQ1, RQ2)

Develop codebook to classify plugins

20

Codebook Entry Potential Values Significance

Analysis Phase (G1) Overview / Subcomponent/
Experimentation

Which analysis phase is the intended use of the
plugin (RQ1, RQ2)

Input Content (G2) Binary file/ Selected area/ etc. What input options does the tool have (RQ1)

Output Content (G2) Function signatures, Emulated
code, etc.

What information is the plugin presenting (RQ1)

Output Method (G2) Code viewer, Console log, etc. How is the information presented (RQ1)

Stat. & Dyn. (G3) Yes / No Does the tool incorporate different contexts
(RQ2)

User Spec (G4) Yes / No Does the tool allow more user control (RQ2)

Readability (G5) Yes / No Does the tool make code comprehension easier
(RQ2)

Functionality Type Scanning, Fuzzing, etc. What are the tools used for (RQ1, RQ2)

Develop codebook to classify plugins

21

Codebook Entry Potential Values Significance

Analysis Phase (G1) Overview / Subcomponent/
Experimentation

Which analysis phase is the intended use of the
plugin (RQ1, RQ2)

Input Content (G2) Binary file/ Selected area/ etc. What input options does the tool have (RQ1)

Output Content (G2) Function signatures, Emulated
code, etc.

What information is the plugin presenting (RQ1)

Output Method (G2) Code viewer, Console log, etc. How is the information presented (RQ1)

Stat. & Dyn. (G3) Yes / No Does the tool incorporate different contexts
(RQ2)

User Spec (G4) Yes / No Does the tool allow more user control (RQ2)

Readability (G5) Yes / No Does the tool make code comprehension easier
(RQ2)

Functionality Type Scanning, Fuzzing, etc. What are the tools used for (RQ1, RQ2)

Develop codebook to classify plugins

22

Codebook Entry Potential Values Significance

Analysis Phase (G1) Overview / Subcomponent/
Experimentation

Which analysis phase is the intended use of the
plugin (RQ1, RQ2)

Input Content (G2) Binary file/ Selected area/ etc. What input options does the tool have (RQ1)

Output Content (G2) Function signatures, Emulated
code, etc.

What information is the plugin presenting (RQ1)

Output Method (G2) Code viewer, Console log, etc. How is the information presented (RQ1)

Stat. & Dyn. (G3) Yes / No Does the tool incorporate different contexts
(RQ2)

User Spec (G4) Yes / No Does the tool allow more user control (RQ2)

Readability (G5) Yes / No Does the tool make code comprehension easier
(RQ2)

Functionality Type Scanning, Fuzzing, etc. What are the tools used for (RQ1, RQ2)

Develop codebook to classify plugins

23

Codebook Entry Potential Values Significance

Analysis Phase (G1) Overview / Subcomponent/
Experimentation

Which analysis phase is the intended use of the
plugin (RQ1, RQ2)

Input Content (G2) Binary file/ Selected area/ etc. What input options does the tool have (RQ1)

Output Content (G2) Function signatures, Emulated
code, etc.

What information is the plugin presenting (RQ1)

Output Method (G2) Code viewer, Console log, etc. How is the information presented (RQ1)

Stat. & Dyn. (G3) Yes / No Does the tool incorporate different contexts
(RQ2)

User Spec (G4) Yes / No Does the tool allow more user control (RQ2)

Readability (G5) Yes / No Does the tool make code comprehension easier
(RQ2)

Functionality Type Scanning, Fuzzing, etc. What are the tools used for (RQ1, RQ2)

Limitations

◎ The scope of this work focuses on what tools exist within our
usability metrics, not the effectiveness of certain tools
○ Future work will evaluate different interaction modalities

with regards to improving RE workflow

◎ We attempted to use github stargazers to measure tool
popularity. Interviews of REs would need to be conducted to
gather use data

24

4.
Results

25

Evaluate what plugins REs are creating

RQ1 What are current interaction modalities for RE tools?
● Determine how REs interact with their tools
● Find out what interaction modalities are associated with

expected usability

RQ2 Do they fit the REʼs processes and mental models?
● Do RE tools follow usability guidelines?

26

27

Analysis phase breakdown by static func. type

Inter-Framework Transfer

28

Analysis phase breakdown by static func. type

Overview was the most
common use phase out of all

the static tools. Symbolic
execution was the only

functionality type that was
used more in a different phase

Inter-Framework Transfer

29

Input types by analysis phase

30

Plugins in the
Sub-Component and

Experimentation phase
allowed for more interactive
input options. 164 tools only

take an input file!

Input types by analysis phase

31

Output methods by analysis phase

32

Output methods by analysis phase

Despite many plugins having
a GUI they can take

advantage of, most present
output only as text. However
static tools are more likely to

use the code viewer!

Evaluate what plugins REs are creating

RQ1 What are current interaction modalities for RE tools?
● Determine how REs interact with their tools
● Find out what interaction modalities are associated with

expected usability

RQ2 Do they fit the REʼs processes and mental models?
● Do RE tools follow usability guidelines?

33

Regression results

34

◎ Model to predict if a plugin presents interactions in line with code
(G2)
○ Tools in the subcomponent phase are almost six times more

likely to follow this guideline

◎ Model to predict if a plugin allows for user configuration (G4)
○ Tools in the experimentation phase are four times more likely

to follow this guideline

5.
Discussion

35

Static is less flexible than dynamic

◎ Majority of static tools are scanning / visualization tools operating
in the Overview phase focused on improving readability
○ Do not promote a transition between phases
○ Do not allow for much analysis tuning

◎ Most dynamic tools operate in the subcomponent and
experimentation phases
○ These tools allow for user selection or integrate with static

information (or both!)

36

Static is less flexible than dynamic

◎ Majority of static tools are scanning / visualization tools operating
in the Overview phase focused on improving readability
○ Do not promote a transition between phases
○ Do not allow for much analysis tuning

◎ Most dynamic tools operate in the subcomponent and
experimentation phases
○ These tools allow for user selection or integrate with static

information (or both!)…but this interaction remains limited

37

Framework developer takeaways

◎ The plugins lean towards static functionality type.
Improvements in API support for dynamic plugins could result in
more usable / interactive dynamic plugins being created

38

Plugin developer takeaways
◎ Focus on user interaction to validate results

39

40

Key Takeaways

● Majority of static tools are scanning / visualization tools operating
in the Overview phase focused on improving readability

● Dynamic tools allow for more user interaction and more closely
follow usability guidelines, not well integrated into frameworks.

● Framework APIs should provide more emphasis on incorporating
input and output interactions with the framework
○ Allow plugin developers to focus on functionality over usability

Questions:
James.mattei@tufts.edu

tsp.cs.tufts.edu

mailto:James.mattei@tufts.edu

