Interaction matters: A comprehensive analysis and a dataset of hybrid IoT/OT honeypots

ACSAC 2022

Shreyas Srinivasa, Jens M. Pedersen, *Emmanouil Vasilomanolakis Aalborg University, Copenhagen *Technical University of Denmark

Honeypots

- Traditional, deception-based entities that simulate services, gather attack information
- decoys, with a "Know your enemy" concept
- used in defensive security as a trap mechanism
- act as sensors that can be used for malware collection
- study attacker behavior
- insider attacks
- Classified based on interaction-levels offered to attackers
 - Low limited simulation of application protocol/service (e.g., SSH, Telnet)
 - Medium extended simulation, may include a device/profile/vulnerability (e.g., Log4j, Windows XP, Siemens S7)
 - High actual systems with services configured to work as a honeypot

As non-production systems, there is no real reason for any interaction with honeypots

Any interaction with a "honeypot" system can be suspicious

Cybersecurity Research Group

Limitations in Honeypot studies

- Narrowed scope to a specific vulnerability/protocol/device
- Operation in a single interaction-level (mostly low or medium)
- Limited geographical perspective
- Limited deployment perspective
- Provide the attack landscape to a specific ecosystem (IoT/OT/IT)
- May contain noise, low-fidelity alerts (Internet scanning services)

Study	Interaction level	Study period	Geographically distributed	Deployment
Honeycloud [7] (2019)	Medium	12 months	Yes	hardware, cloud
IoTPOT [27](2015)	Low	39 days	No	physical
Open for hire [40] (2021)	Low, Medium	1 month	No	physical
Muti-faceted Honeypot [52](2020)	Low	2 years	No	physical
Honware [48] (2019)	High	14 days	No	physical
Siphon [13](2017)	High	2 months	Yes	physical, cloud
Hornet 40 [44](2021)	Passive	40 days	Yes	cloud
Picky Attackers [3] (2017)	Medium	4 months	Yes	physical, cloud

Motivation

- Do any operational parameters **influence** the type of attacks received on a honeypot?
- What is the influence of known operational parameters on honeypot studies
 - Interaction-levels
 - Simulation environments
 - Deployment infrastructure
 - Geo-location
- Can we capture specific attacks on different parameters?
- Producing a dataset that the research community can use with more freedom, flexibility and less noise

Study scope

- Conduct a honeypot study to evaluate the influence of operational parameters
- A study of **3 months**
- 6 application protocols (Telnet, SSH, HTTP, MQTT, Modbus, CoAP)
- 4 Geo-locations
- 2 deployment environments (Lab, Cloud)
- **3 interaction levels** (low, high, hybrid)
- 16 hosts in total

RIoTPot*

Modular

- Hybrid-interaction
 - Choice of operation (low, medium or high)
 - Choice of operation of specific protocols in either interaction
- extensible
- Extended to adapt to this study

*Srinivasa, S., Pedersen, J. M. & Vasilomanolakis, E., "**RIoTPot: a modular hybrid-interaction IoT/OT honeypot**", In 26th European Symposium on Research in Computer Security (ESORICS 2021), Darmstadt, Germany, October 4–8, 2021, Proceedings, Part II, Springer, Vol. 2. p. 745-751 7 p. (Lecture Notes in Computer Science, Vol. 12973)

Cybersecurity Research Group

Overview

Host	Environment	Geo-Location	Interaction-level	Protocols Emulated
R1	Lab	Denmark	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R2	Lab	Denmark	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
Da	Lab	Damarda	Urbuid	High - SSH, MQTT, Modbus, CoAP
КЭ	R3 Lab Denmark Hybrid I		Low - Telnet, HTTP	
C1	Lab	Denmark	Medium	Telnet, SSH, HTTP, Modbus, S7
R4	Cloud	New York City	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R5	Cloud	New York City	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R6 Cloud		Now Vorle City	Linhuid	High - SSH, MQTT, Modbus, CoAP
KO	Cioua	New York City	Hybrid	Low - Telnet, HTTP
C2	Cloud	New York City	Medium	Telnet, SSH, HTTP, Modbus, S7
R 7	Cloud	Frankfurt	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R8	Cloud	Frankfurt	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
Do	Cloud Frankfurt		I Irahai d	High - SSH, MQTT, Modbus, CoAP
K9	Cloud	rialikturt	riybriu	Low - Telnet, HTTP
C3	Cloud	Frankfurt	Medium	Telnet, SSH, HTTP, Modbus, S7
R10	Cloud	Singapore	High	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
R11	Cloud	Singapore	Low	Telnet, SSH, HTTP, MQTT, Modbus, CoAP
D19	Cloud	Cing going one	Hybrid	High - SSH, MQTT, Modbus, CoAP
	Cloud	Singapore	riybriu	Low - Telnet, HTTP
C4	Cloud	Singapore	Medium	Telnet, SSH, HTTP, Modbus, S7

Table 2: Experimental setup overview

Dataset

Dataset

• A comprehensive dataset of traffic as *pcaps* and *database dumps*

- The database schema contains
 - Source IP address (attacker)
 - Destination IP addresses (honeypots, anonymized)
 - Source IP ports
 - Destination IP ports
 - Timestamps
 - Geolocation of the attacker IPs
 - Interaction level of the honeypots and protocols (where the attack event was observed)
 - Deployment environment information of the honeypots (Cloud/Lab)
 - IP layer traffic and flags
 - Transport layer traffic and flags
 - Application layer data transmitted

https://doi.org/10.11583/DTU.21088651

Evaluation and Analysis

Parameter: Interaction-level (Total Events, type)

Interaction-level	Even-type	Count
Low-interaction	Scanning-service	2.02 M
High-interaction	Scanning-service	2.02 M
Hybrid-interaction	Scanning-service	2.02 M
Low-interaction	Malicious	1.46 M
High-interaction	Malicious	1.76 M
Hybrid-interaction	Malicious	1.57 M
Total scanning-ser	6.07 M	
Total malicious ev	4.8 M	
Total events	10.87 M	

Table 3: Total events by type and interaction level

255%

Parameter: Interaction-level (unique IPs)

				1,300 _[
	Testanasticas	#NT = 1 : -:		1,200 -		
	Interaction	#Mancious	#Unique	1 100 -		
	Level	Events	IPs	1,100 -		
	High-Interaction	1, 763, 395	18, 431	1,000 - C_		Λ
	Hybrid-interaction	1, 575, 807	12,618	-900-		1
	Low-interaction	1, 463, 883	8, 635	# 0 ***		١
	Distinct IPs from	00 E10		700 -	Mun 1	
	all interaction levels	22, 3	10	600 -		
Tał	ole 4: Summary of mali	cious events a	nd unique	IPs	hundre	

Туре

HI-UniquelP

Parameter: Deployment infrastructure

- High-interaction received more attacks than low and hybrid
- Malicious events are seen more in the cloud (more deployments in comparison to the lab)
- Observed minor variations in trend of malicious events in both operating environments

Parameter: Geo-location, city, interaction level, events

- Sphere size denotes the number of daily events per day by interaction-level
- Iowest received: 743, highest: 13,287
- The lab instances received lower malicious events
- The Frankfurt instances (cloud) received the highest traffic overall

Parameter: Geo-location, lowest-highest, interaction-level

- Highest events recorded in Frankfurt, with High Interaction
- Lowest events recorded in lab deployment, with Lowinteraction
- Regardless, the High-interaction deployments received the highest events

Parameter: Protocol, events

• Highest events on SSH, followed by HTTP, Telnet, MQTT, Modbus and CoAP

Cybersecurity Research Group

Attack types – by interaction-level

- Diverse attack types observed
- Persistent volume of brute-force attacks observed across all interaction-levels
- *events from known scanning-services are filtered

Multistage attacks

• Total of 4786 attacks across all instances

Attack sources

Device type	Protocol	Count
Router	HTTP	1819
DVR	HTTP	1621
Router	Telnet	721
IP Phone	HTTP	311
Switch	HTTP	287
Switch	Telnet	211
IP Printer	HTTP	176
NAS	HTTP	118
Total		5264

22,518 Unique attack sources

Table 5: Attack-source types

Region-specific attacks

Instance	Region	Attack-type	que attacker IP	Volume
R1	Denmark(lab)	Brute-force		7%
R4	New-York	Brute		11%
R7	Frankfurt	P	per	14%
R10	Singapore		the par	14%
R5	New-Yor	its of		17%
R7	Frankfurt	e result		18%
R10	Singapore	More		12%
R10	Singapore		6	16%
Ta	ble 7: Sum		on-specific attack typ	es

Limitations

- The honeypot deployed in the lab had an IP address associated with the University Research Network
- Operating honeypots/honeyfarms as a research individual is challenging
- Nation-level CERTS are very efficient in tracking vulnerable systems exposed to the Internet
- Over-counting as a "connection" definition differs on protocols

- Honeypots are still an effective tool to study attack landscape; if configured carefully
- Carefully configured honeypots (High interaction) can provide with more effective data for Threat Intelligence
- The parameters play an important role in honeypots and honeypot studies
- Supplementary findings
 - High-interaction honeypots receive higher attack events
 - Location-specific attacks observed
 - There is an increase in "scanning-service" traffic, many new services observed

Future Work

- Statistics of malware identified on specific honeypot types and geo-location
- Longer study
- Study of interesting traffic received during conflict period (beyond scope in this study)

Questions?

Contact: Shreyas Srinivasa <u>https://sastry17.github.io</u> Email: <u>shsr@es.aau.dk</u>

Reach out for: Curated datasets on Internet Scanning, Honeypots, DarkWeb and more...

