ENIDrift: A Fast and Adaptive Ensemble System for Network Intrusion Detection under Real-world Drift

Xian Wang
The Hong Kong University of Science and Technology
xwangggj@connect.ust.hk
Multiple machine learning (ML) and deep learning (DL) algorithms have been applied to network intrusion detection systems (NIDS).

ML-based NIDSs have the following two main common advantages:

- No need to prepare a signature database in advance
- Can detect unknown attacks

They can reach 95% (even 100%) accuracy, achieving high experimental performance.
Limitations 1: A narrow cover on real-world drift

There are three main sources of network behavior drift in real-world detection

- Concept drift [Ditzler et al., TKDE’13] of network distribution
- Imbalanced and changeable network packet ratio
- Well-crafted ML attack [Demontis et al., TDSC’19]

But none model has a wide cover on real-world drift.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Drift</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imbalanced Data</td>
<td></td>
<td>○</td>
<td>○</td>
<td></td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Well-crafted ML attack</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

● considers the corresponding problem in its research scope; ○ does not focus on the problem in its work but uses a framework that basically does not have the problem.
○ has the problem and does not solve it well in its scope.
Limitations 2: Low processing speed

Existing ML-based approaches pose high runtime overhead and have low processing speeds for incoming network packets.

- Current approach: 7 packets/s
- Common small-scale network: 40 packets/s
- Large-scale network: 300 packets/s

The latency of detection can leave time interval for the attack to cause severe damage to our system.
ENIDrift

ENIDrift is a fast and adaptive ensemble system for network intrusion detection under real-world drift. It focuses on dynamic and incremental network packet streams.

The design of ENIDrift has three components
1) iP2V, incremental feature extraction method based on Word2Vec
2) Sub-classifier generation module
3) ENIDrift update module

Advantage # 1 – having wide adaptability to real-world drift

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Drift</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Imbalanced Data</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Well-crafted ML attack</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

● considers the corresponding problem in its research scope.
○ does not focus on the problem in its work but uses a framework that basically does not have the problem.
○ has the problem and does not solve it well in its scope.

Table: Comparison of related approaches on their research scope

Advantage # 2 – improving network packet processing speed to the speed of common network environment
We consider the drift of network environment in real world

1 – Concept drift

Concept drift is the statistical properties of the target variable that change over time in unforeseen ways [Lu et al., TKDE’29]

For NIDS:
- the change of normal network behavior
- the change of anomalous network behavior
Threat Model

We consider the drift of network distribution in real world

2 – Imbalanced data

The ratio of normal and anomalous network packets is not 50:50 and always changing.

Specifically:
- the ratio is imbalanced
- sometimes very extreme
- always changing

Figure: Examples of real world drift in network environment
Threat Model

We consider the drift of network distribution in real world

3 – Well-crafted ML attack

There are well-crafted attacks for ML-based NIDS

We only consider two specific attacks:
- data contamination for training data
- adversarial attack for NIDS
[MACGAN, WASA’20]
ENIDrift is a fast and adaptive ensemble system for network intrusion detection under real-world drift. It focuses on dynamic and incremental network packet streams.

The design of ENIDrift has three components:
1) iP2V, incremental feature extraction method based on Word2Vec
2) Sub-classifier generation module
3) ENIDrift update module
The ENIDrift NIDS - iP2V

We have an incremental Packet to Vector tool, iP2V.

- Its extraction is based on relationships among network packets and has good performance.
- It only has simple operations and is very fast.
- We decouple the computation of its ANN and make it incremental.

Figure: An overview of iP2V
The ENIDrift NIDS - G-idx based Sub-classifier Generation Module

Previous approaches:
- Using variance to control the sub-classification generation
- Using accuracy to control the sub-classification generation.

We consider both variance and accuracy in our generation index (G-idx) so that the generation can be more stable and defend the well-crafted ML attack.

\[r = \lambda Var(o) + (1 - \lambda) Err(o), \]

We also re-construct the generation workflow so that the time complexity of the generation is reduced from O(n) to O(1).
The ENIDrift NIDS - Ensemble Update Module

The update module is made to maintain and strengthen the adaptability of ENIDrift.

We make three main adjustments based on its original framework:

1. Because there are extremely imbalanced network packets, the adaptive ensemble framework is changed from a supervised to an unsupervised model;

2. There are upper and lower bounds for the sub-classifier weights. Sub-classifiers with weights lower than a pre-defined threshold will be muted for some time for ENIDrift ensemble classification;

3. There is also an upper bound for the dataset size of the sub-classifier generation. It can exclude bad datasets, e.g., data contamination.
Implementation and Evaluation

Test models:
- Original Kitsune
- Retainable Kitsune
- ENIDrift with PCA
- ENIDrift with AutoEncoder

Datasets:
- CICIDS2017
- MAWILab
- RWDIDS

The experiment has four levels.

- Level 1: test by network packets collected over a long period of a day, where real world drift is light.
- Level 2: test by network packets from different days and attacks, where real world drift is heavy.
- Level 3: test by real world drift from the three specific real world drifts
 (using our own real world drift dataset for network intrusion detection)
Evaluation Result

- ENIDrift significantly outperforms the state-of-the-art solutions by up to 69.78% of F1 and
- ENIDrift achieves a 100% F1 against our adversarial attack and is adaptive to various real-world drifts.

![Figure: Breakdown of execution time in level-1](image)

- reduces running time by 87.6%.

We also show the performance of the three components in detail.
Evaluation Result

We also evaluate the dependency on the releasing speed of datasets in level 4.

ENIDrift can maintain 80% performance with a latency smaller than 1200s.

Our model ENIDrift does not require a real-time training network packet release and has a tolerance for inadequate annotated training data.

Figure: The memory footprint, F1-score and execution time (after normalization) of ENIDrift-PCA with respect to different LRI in the field test.
Conclusion

- We develop a new NIDS, ENIDrift with several new techniques:
 1) iP2V
 2) G-idx based sub-classifier generation modules
 3) ENIDrift update module
- New dataset with real-world drift
 We spent considerable effort collecting and constructing the first dataset considering real-world settings and fierce drift caused by concept drift, imbalanced data and well-crafted ML attack.
- Readily deployable performance
 Our evaluation demonstrates that ENIDrift has good performance on both accuracy and processing speed, and is sufficient for real-world deployment even under inadequate and delayed training data.
Thank you!