
Analysis of Payment Service Provider 
SDKs in Android

Presented at Annual Computer Security Applications Conference (ACSAC), 2022

1

Samin Yaseer Mahmud, K. Virgil English, Seaver Thorn, 
William Enck, Adam Oest, Muhammad Saad



Digital Payment has Revolutionized Commerce

Figure: Worldwide transaction using Digital payment

Mobile applications are becoming a predominant form of payment. 2

https://www.statista.com/outlook/dmo/fintech/digital-payments/worldwide


Payment Processing SDK 

3

PSP PSP



Mobile Application Security Verification 
Standard

• MASVS (v1.2) is an industry security standard for mobile 
applications, proposed by OWASP.

• Captures common android security weaknesses 
• We designed 28 security checks of 4 broader categories from the 

standard that are applicable to Payment and SDKs
• Classifies requirements into: 

– MASVS L1 (Ordinary Use Cases) 
– MASVS L2 (Sensitive Use Cases)

• MASVS captures many requirements of PCI DSS

4

MASVS Categories

Architecture
Data Storage
Cryptography
Authentication

Network Communication
Platform Interaction

Code Quality
Resiliency against RE



Data Storage Requirements

• Goal is to protect sensitive user data in device
• Many requires dataflow analysis for tracking data

– Mostly PCI DSS related
• Others involve looking at syntax in code, layout, 

config files
• Excluded checks:

– App removes data from system memory
– App educates user about processed data

5

MASVS Check Approach

Android Keystore not utilized Syntax (Code)

Accessed data from External Storage Syntax (Code, Config)

Logged sensitive data Data Flow

Data shared with third parties Data Flow

Keyboard cache enabled Syntax (Layout)

Data leaked through IPC Data Flow

Data leaked through UI Syntax (Layout)

Auto backup turned on Syntax(Config)

Screenshot disabling not detected Syntax(Code)

Screen lock presence not detected Syntax(Code)

Sensitive data stored Data Flow

Sensitive data stored unencrypted Data Flow

MASVS-L1 MASVS-L2



Goal and Key Challenges

Goal: To build a novel tool that would enable dataflow analysis of an SDK without 
the need of a host app
Challenges:
– Entry points to SDK analysis are not easily inferred
– Existing tools consider whole application context

Goal: To perform a security evaluation of payment SDKs with industry security 
standards
Challenges:
– Security standards are written in natural languages
– Security standards are written with application in mind

6



AARDroid Architecture

7

Preprocessing Steps:

1: Connecting to the SDK:
➔ Create empty android project
➔ Include SDK

2: Identifying relevant API:
➔ Consider all public API
➔ Consider API related with Strings

3: Resolving API Semantics:
➔ Incorporate Text analytics
➔ Incorporate Data ontology
➔ Connect dummy edges from app -> SDK



Resolving API Semantics
Step 1: Generate the AST of the SDK to extract API Semantics

Step 2: Determine if an API is sensitive
• Inspect API method name
• Inspect API parameters
• E.g., public void processTransaction

(String creditCardNumber) 

Step 3: Identify sensitive parameter
• Data Ontology

Step 4: Assign sensitivity as High, Medium, Low

8



Payment SDK Analysis
SDK Data Set

• No specific market for hosting SDK
• 50 android Payment SDK
• SDKs collected from Google Pay and Apple Pay’s website

AARDroid Analysis
• We ran our 28 MASVS checks on 50 Payment SDKs
• 9 SDK code were obfuscated, 6 dataflow checks were skipped on these
• 24 SDK did not have a UI, 4 UI checks were skipped on these
• Average analysis time ~8 minutes

Manual Validation
• We manually validated 50 SDKs over a two-week period with JD-GUI, Fernflower

9



Highlighted Findings

10

• 3 SDKs save unencrypted sensitive information such as credit card number and 
CVC. A fourth SDK stores a CVC in encrypted form. 
– PCI-DSS standards prohibit such storage.

• 11 SDKs rely on outdated cryptographic primitives for sensitive functionality.
– e.g., DES, Blowfish, SHA1, MD5

• 10 SDKs do not follow industry standards on UI for taking credit card data from users.
– 4 SDK display CVC in plain text
– 3 SDK displays unmasked Credit card number (not reported)
– 6 does both



Highlighted Findings

11

• 26 SDKs use WebViews, all of which have at least one improper configuration, that 
introduces unnecessary attack surface.
– 20 enables JS , 8 allows JS Bridge, 23 allow local file access, 21 do not clear 

WebView cache
• 37 SDKs do not meet at least one of the basic (MASVS-L1) security requirements, 12 

SDKs do not meet at least one of the more advanced (MASVS-L2) security 
requirements. 



Case Study

12

• Stores unencrypted credit card number
• Stores Encrypted CVC
• Stored encryption key on Shared preference base64 

encoded
• Less secure key size (RSA 1024)
• UI leaks CVC and un-masked Credit card number
• Misconfigured WebView with all excess privileges
• 16 out of 28 MASVS requirements not met



Responsible Disclosure
Goal: Get feedback from SDK developers regarding the findings.
• Reached out 46 SDK vendors 
• 27 acknowledged receiving it 

– 13 were auto-generated
• 7 vendors are investigating the issues (no further response)
• 1 claimed to release patches (BlueSnap)
• 1 claimed them less severe (Google Wallet)
• 1 claimed deprecated and informed affected merchants. 

(PayPal)
• 4 acknowledged majority of the concerns (26 out of 37) 

Insights: 
• Some issues are intentional business decision
• Some issues are not appropriate for SDK 13

4 months later . . . 

12 out of 16 issues were acknowledged



Summary

• Static analysis tool for analyzing stand-alone SDKs 
• Evaluate 50 Payment SDKs against OWASP’s 

MASVS
• Identified several security weaknesses 
• Identified gap between security standards and their

implementation in payment SDKs
• Responsibly disclosed to SDK vendors



Questions

I am looking for full-time roles in industry!

Samin Yaseer Mahmud

Ph.D Candidate, NCSU 
Expected Graduation: 
May, 2023
smahmud@ncsu.edu
https://saminmahmud.com

• Static analysis tool for analyzing stand-alone SDKs 
• Evaluate 50 Payment SDKs against OWASP’s 

MASVS
• Identified several security weaknesses
• Identified gap between security standards and their

implementation in payment SDKs 
• Responsibly disclosed to SDK vendors

mailto:smahmud@ncsu.edu
https://saminmahmud.com

