
Confining Progressive Web Applications 
by Debloating Web APIs

ChangSeok Oh, Sangho Lee†, Chenxiong Qian‡, Hyungjoon Koo*, and Wenke Lee

Georgia Institute of Technology, †Microsoft Research,
‡University of Hong Kong, *Sungkyunkwan University

DeView:

ACSAC 2022



● A stand-alone web app running outside the web browser
● Similar to the native app’s look-and-feel
● Installable via the ⊕ button in the address bar or one in the content

2

Progressive Web Application



3

Progressive Web Application



Rich Web APIs inevitably result in a large attack surface of PWAs.

● Having more attack vectors than native applications
● Sharing the same vulnerability incurred by unwanted Web API across PWAs
● Suffering from traditional web attacks (XSS/UXSS, spoofing) and supply chain attacks

4

The Large and Identical Attack Surface of PWAs



5

The Large and Identical Attack Surface of PWAs



PWAs often use unpopular Web APIs. Thus, cost-benefit-based approaches do not work for 
debloating web APIs.

6

Preliminary Research on Web API Usage of PWAs



A different PWA shows different Web API usage. PWA pairs do not have many Web APIs in 
common.

7

Preliminary Research on Web API Usage of PWAs



Each PWA uses a small portion of common Web APIs. Thus, a single debloated browser 
engine that covers all PWAs is still bloated in the view of each PWA.

8

Preliminary Research on Web API Usage of PWAs



Can we reduce an attack surface and customize it for each PWA?

Web API

Starbucks

Web API

Web API

Telegram

PWA

Web API

Uber

PWAPWA

PWA

Web API 

Starbucks

Web API

Telegram

PWA

PWA

Uber

9

Research Goal



A Web API debloating system for PWAs. DeView confines the web API each PWA can access 
by removing unwanted ones from browser engine libraries.

To this end, DeView introduces two techniques:

● Record-and-replay-based Web API Profiling on the server-side
● Compiler-assisted on-demand browser binary debloating on the client-side

10

DeView



11

Vanilla
Browser Libs

Storage

Web Manifest

PWA

Web Contents

Instrumented 
Web Browser

Web API Usage
Profiling

Vanilla
Browser Libs

Storage

Web Manifest 
Web API list

PWA

Web Contents

Web Browser

Browser
Libs

On-Demand
Web API Debloating

Debloated
Browser Libs

PWA

Web Contents

Web Manifest 
Web API list

DeView: System Overview



RQ1. Removable Web APIs: How many Web APIs can DeView remove in a debloating 
browser engine?

RQ2. Security Benefit: How effectively does DeView prevent possible attacks?

RQ3. Code Coverage: How much code coverage can DeView achieve in finding exercised 
web APIs?

RQ4. Costs: What are the performance overheads of DeView?

12

Evaluation



For 114 real-world PWAs, DeView removes 91.8% of 8,249 Web APIs from the Chromium 
browser engine on average.

13

Evaluation: Removable Web APIs



DeView prevents 76.3% out of 478 CVEs on average. It is the most effective in defeating XSS 
and bypass attacks.

14

Evaluation: Security Benefit



DeView outperforms a monkey test regarding code coverage and Web API finding. 
Combining the two approaches can improve both results.

15

Evaluation: Code Coverage



● The CPU and memory overheads of Deview’s profiling arise running from a web page. 
● Debloating slightly slows down launching a PWA (0.24s).
● 68 MB of disk space per PWA is needed to save the debloated binaries.

16

Evaluation: Costs for Debloating Web APIs



● Each PWA uses Web API differently, so a PWA doesn’t need all Web APIs.
● DeView eliminates 91% of the whole Web APIs per application on average.
● DeView prevents 76% of 478 CVEs related to Web API exploits on average.
● DeView significantly reduces the attack surface of a PWA with negligible costs.
● DeView is open-sourced.

17

Takeaways

https://github.com/shivamidow/deview



Thank You!

18


