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● A stand-alone web app running outside the web browser
● Similar to the native app’s look-and-feel
● Installable via the ⊕ button in the address bar or one in the content
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Progressive Web Application
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Progressive Web Application



Rich Web APIs inevitably result in a large attack surface of PWAs.

● Having more attack vectors than native applications
● Sharing the same vulnerability incurred by unwanted Web API across PWAs
● Suffering from traditional web attacks (XSS/UXSS, spoofing) and supply chain attacks
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The Large and Identical Attack Surface of PWAs
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The Large and Identical Attack Surface of PWAs



PWAs often use unpopular Web APIs. Thus, cost-benefit-based approaches do not work for 
debloating web APIs.

6

Preliminary Research on Web API Usage of PWAs



A different PWA shows different Web API usage. PWA pairs do not have many Web APIs in 
common.
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Preliminary Research on Web API Usage of PWAs



Each PWA uses a small portion of common Web APIs. Thus, a single debloated browser 
engine that covers all PWAs is still bloated in the view of each PWA.
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Preliminary Research on Web API Usage of PWAs



Can we reduce an attack surface and customize it for each PWA?
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Research Goal



A Web API debloating system for PWAs. DeView confines the web API each PWA can access 
by removing unwanted ones from browser engine libraries.

To this end, DeView introduces two techniques:

● Record-and-replay-based Web API Profiling on the server-side
● Compiler-assisted on-demand browser binary debloating on the client-side
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DeView
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DeView: System Overview



RQ1. Removable Web APIs: How many Web APIs can DeView remove in a debloating 
browser engine?

RQ2. Security Benefit: How effectively does DeView prevent possible attacks?

RQ3. Code Coverage: How much code coverage can DeView achieve in finding exercised 
web APIs?

RQ4. Costs: What are the performance overheads of DeView?
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Evaluation



For 114 real-world PWAs, DeView removes 91.8% of 8,249 Web APIs from the Chromium 
browser engine on average.

13

Evaluation: Removable Web APIs



DeView prevents 76.3% out of 478 CVEs on average. It is the most effective in defeating XSS 
and bypass attacks.
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Evaluation: Security Benefit



DeView outperforms a monkey test regarding code coverage and Web API finding. 
Combining the two approaches can improve both results.
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Evaluation: Code Coverage



● The CPU and memory overheads of Deview’s profiling arise running from a web page. 
● Debloating slightly slows down launching a PWA (0.24s).
● 68 MB of disk space per PWA is needed to save the debloated binaries.

16

Evaluation: Costs for Debloating Web APIs



● Each PWA uses Web API differently, so a PWA doesn’t need all Web APIs.
● DeView eliminates 91% of the whole Web APIs per application on average.
● DeView prevents 76% of 478 CVEs related to Web API exploits on average.
● DeView significantly reduces the attack surface of a PWA with negligible costs.
● DeView is open-sourced.
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Takeaways

https://github.com/shivamidow/deview



Thank You!
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