
Transformer-Based Language Models for
Software Vulnerability Detection

Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef Pieprzyk, and Surya Nepal

CSIRO’s Data61, Marsfield, Australia

{chandra.thapa, seung.jang, ejaz.ahmed, seyit.camtepe, josef.pieprzyk, surya.nepal}@data61.csiro.au

Annual Computer Security Applications Conference (ACSAC)

December 5 – 9, 2022

Outline

• Problem
• Transformer-based language models for software vulnerability
detection

• Systematic framework

• Our results
• Discussion on available platforms

• Conclusion

Problem

• Software is an integral part of most
computing devices.

• Adversaries exploit these software
vulnerabilities to gain unauthorized
system control and steal or modify
sensitive and private data for their
benefit.

• Finding and patching these
vulnerabilities are important to
secure the products from
adversaries.

Examples of software vulnerability

(a) Vulnerable with Buffer Error (b) Non-vulnerable

Examples of software vulnerability

(a) Vulnerable with Resource Management Error (RME) (b) Non-vulnerable

Machine learning to find software vulnerabilities

Fig. Recurrent Neural Networks (e.g., BiLSTM, BiGRU)

Fig. Bidirectional Encoder Representations from Transformers (BERT)

Transformer-based language models

• Transformer-based models are SOTA
models in Natural Language Processing
(NLP) tasks.

• We can extend the use of these models
beyond NLP tasks through the process
formally known as “Transfer learning.”

• Examples: BERT, DistilBERT, CodeBERT,
GPT-2, MegatronBERT, MegatronGPT-2.

Right
shifted
outputs

Input
Embedding

Multi-
head

attention
Inputs Add &

Norm

Fe
ed

fo
rw

ar
d

Positional Encoding

Q

K

v Add &
Norm

𝑁 ×

Encoder

Output
Embedding

Masked
Multi-head
attention

Add &
Norm

Positional Encoding

Q

K

v

𝑁 ×

Decoder

Multi-
head

attention

Fe
ed

fo
rw

ar
d

Add &
Norm

Add &
Norm

K
v
Q Li

ne
ar

So
ft

m
ax

Output

Fig. Transformer architecture

Transformer-based language models for
software vulnerability detection

Right
shifted
outputs

Input
Embedding

Multi-
head

attention
Inputs Add &

Norm

Fe
ed

fo
rw

ar
d

Positional Encoding

Q

K

v Add &
Norm

𝑁 ×

Encoder

Output
Embedding

Masked
Multi-head
attention

Add &
Norm

Positional Encoding

Q

K

v

𝑁 ×

Decoder

Multi-
head

attention

Fe
ed

fo
rw

ar
d

Add &
Norm

Add &
Norm

K
v
Q Li

ne
ar

So
ft

m
ax

Output

RQ1: How to effectively leverage transformer-based language models for software vulnerability detection?

RQ2: How well do existing transformer-based language models detect software vulnerabilities compared to other contemporary RNN-based models?

RQ3: Which platform is efficient for running these models?

Systematic framework

Data translation:

• Code Gadgets and their extraction

• Data preparation
• Data cleaning (removing duplicate code

gadgets and the same gadgets with
conflicting labels)

• Data preprocessing (replacing the user-
defined function name and user-assigned
variable names)

• Data partitioning (into groups)
• Word embeddings (tokenization and

embeddings)

Li et al. [1] propose the code gadgets.
Generation:
1) Load all C/C++ files.
2) Normalize source codes, includes

removing comments.
3) Extract all functions and variable

definitions together.
4) For library/API function call,

perform a back-track
5) Extract all variable names from the

function call
6) Stack up all lines which have

relationship with the variables
7) If any variable passes from a caller,

perform another back-track for
the caller.

[1] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong, “VulDeePecker: A Deep Learning-Based System for Vulnerability Detection,” In Proc. NDSS 2018.

Systematic framework

Table. Models considered in our studies and their sizes.

Systematic framework

Fig. System flow for software vulnerability detection.

Our Results

Datasets

• VulDeePecker Data [1]
• CWE-119 Buffer Error (BE)
• CWE-399 Resource Management Error (RME)

• SeVC Data [2]: Having 126 types of different
vulnerabilities, and divided into four major
categories based on its cause:
• Library/API Function Call
• Array Usage
• Pointer Usage
• Arithmetic Expression

Performance of the transformer-based models on VulDeePecker dataset

Table. Multi-class classification task.

Table. Binary classification task.

Performance of the transformer-based models on SeVC dataset

Table. Binary classification task. Table. Multi-class classification task.

Choosing the models

Fig. Binary classification task.

Fig. Multi-class classification task. Fig. Total time taken in hours to fine-tune for 10 epochs.

Insight: While choosing the model, if there is no time constraint for fine-tuning, we can pick one of the best performing models, e.g., GPT-2 Large for the
Group 1 dataset and F1-score. If there is a time constraint, then we need to pick the model that has the best trade-off between the performance and fine-
tuning time, e.g., CodeBERT for Group 1 dataset and F1-score

Discussion on platforms

GPU
16

GPU
20

GPU
24

GPU
28

GPU 0 GPU
4 GPU 8 GPU

12

Data Parallelism

Pipeline Parallelism

Layer 1

Layer 4

Fig. Dee learning model parallelism. Table. Summary of popular open-sourced ML platforms.

Challenges:
(1) No Admin privilege
(2) Model parallelism
(3) Small GPU RAM

Table. Fine-tuning performance GPT-2 XL model with/without DeepSpeed.

Insight:
(1) Stick with data parallelism if the model fits inside one GPU, and
(2) If we cannot accommodate the model inside one GPU, go with

Huggingface and DeepSpeed frameworks.

Conclusion
• Studied transformer-based language models for software vulnerability
detection.

• This is the first work that examines the transformer-based language model
on code gadgets.

• Overall, transformer-based language models perform well in software
vulnerability detection in C/C++ source codes.

• Future works and limitations
• Studying more vulnerabilities (besides C/C++ source codes) and increasing the dataset
size.

• Improving the code gadget extraction (besides standard code gadgets).

Thank you!

