Transformer-Based Language Models for Software Vulnerability Detection

Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef Pieprzyk, and Surya Nepal

CSIRO's Data61, Marsfield, Australia

{chandra.thapa, seung.jang, ejaz.ahmed, seyit.camtepe, josef.pieprzyk, surya.nepal}@data61.csiro.au

Annual Computer Security Applications Conference (ACSAC)

December 5 – 9, 2022

Outline

- Problem
- Transformer-based language models for software vulnerability detection
- Systematic framework
- Our results
- Discussion on available platforms
- Conclusion

Problem

Google Patches Actively Exploited Chrome Bug

Apple's Zero-Day Woes Continue

Two new bugs in macOS and iOS disclosed this week add to the growing list of zero-days the company has rushed to patch over the past year.

Microsoft Exchange Server targeted with zero-day vulnerabilities

Microsoft warned that two unpatched zero-day vulnerabilities are being exploited against Exchange Server, a problem that's causing déjà vu for some researchers.

Zoom Patches Zero-Day Vulnerability in Windows 7

The flaw also affects older versions of the operating system, even if they're fully patched.

Code vulnerability failures in manufacturing on display in Toyota supply chain attack

VDB-168508 - CVE-2021-1088 -ID 5148 NVIDIA SHIELD TV UP TO 8.2.1 NVDEC BUFFER OVERFLOW

VDB-163591 · CVE-2020-9940

APPLE MACOS USD FILE BUFFER OVERFLOW

FACEBOOK WHATSAPP ON ANDROID VIDEO STREAM BUFFER OVERFLOW

- Software is an integral part of most computing devices.
- Adversaries exploit these software vulnerabilities to gain unauthorized system control and steal or modify sensitive and private data for their benefit.
- Finding and patching these vulnerabilities are important to secure the products from adversaries.

Examples of software vulnerability

```
static char * badSource(char * data)
{
   data = (char *)malloc(50*sizeof(char));
    data[0] = '\0';
    return data;
}
static void bad()
{
    char * data:
    data = NULL;
    data = badSource(data);
        char source[100];
        memset(source, 'C', 100-1);
        source[100-1] = '\0';
        strcat(data, source); /* Bad */
        printLine(data);
        free(data);
    }
}
```

(a) Vulnerable with Buffer Error

```
static char * goodSource(char * data)
{
    data = (char *)malloc(100*sizeof(char));
    data[0] = '\0';
    return data;
}
static void good()
    char * data:
    data = NULL;
    data = goodSource(data);
        char source[100];
        memset(source, 'C', 100-1);
        source[100-1] = '\0';
        strcat(data, source); /* OK */
        printLine(data);
        free(data);
    }
}
```

(b) Non-vulnerable

Examples of software vulnerability

```
static void bad()
{
    int64_t * data;
    data = NULL;
    data = new int64_t;
    *data = 5LL;
    printLongLongLine(*data);
    /* Bad: Need to release 'data' */
    return;
}
```

```
static void good()
{
    int64_t * data;
    data = NULL;
    data = new int64_t;
    *data = 5LL;
    printLongLongLine(*data);
    delete data; /* OK */
    return;
}
```

(a) Vulnerable with Resource Management Error (RME)

(b) Non-vulnerable

Machine learning to find software vulnerabilities

Transformer-based language models

- Transformer-based models are SOTA models in Natural Language Processing (NLP) tasks.
- We can extend the use of these models beyond NLP tasks through the process formally known as "Transfer learning."
- Examples: BERT, DistilBERT, CodeBERT, GPT-2, MegatronBERT, MegatronGPT-2.

Fig. Transformer architecture

Transformer-based language models for software vulnerability detection

- RQ1: How to effectively leverage transformer-based language models for software vulnerability detection?
- RQ2: How well do existing transformer-based language models detect software vulnerabilities compared to other contemporary RNN-based models?
- RQ3: Which platform is efficient for running these models?

Systematic framework

Data translation:

- Code Gadgets and their extraction
- Data preparation
 - Data cleaning (removing duplicate code gadgets and the same gadgets with conflicting labels)
 - Data preprocessing (replacing the userdefined function name and user-assigned variable names)
 - Data partitioning (into groups)
 - Word embeddings (tokenization and embeddings)

Li et al. [1] propose the code gadgets. Generation:

- 1) Load all C/C++ files.
- 2) Normalize source codes, includes removing comments.
- 3) Extract all functions and variable definitions together.
- 4) For library/API function call, perform a back-track
- 5) Extract all variable names from the function call
- 6) Stack up all lines which have relationship with the variables
- If any variable passes from a caller, perform another back-track for the caller.

Dataset	Туре	Original	Cleaned	Train	Test
Group 1	Buffer Error (BE)	10440	7649	6161	1488
Gloup I	Non-vulnerable	29313	12262	9768	2494
Group 2	Resource Management Error (RME)	7285	2757	2214	543
Gloup 2	Non-vulnerable	14600	5010	4000	1010
Group 3	BE+ RME	17725	10395	8368	2027
Group 5	Combined Non-vulnerable	43913	17197	13704	3491

Word Embeddings	Embedding size	Models
Tokenizer (our own) and Word2Vec	512	BiLSTM, BiGRU
Huggingface's Bert Tokenizer (Tokenize based on WordPiece)	512	BERT (BERTBase, MegatronBERT)
Huggingface's DistilBert Tokenizer (Runs end-to-end tokenization based on punctuation splitting and WordPiece)	512	DistilBERT
Huggingface's Roberta Tokenizer (Derived from GPT-2 tokenizer using byte-level Byte-Pair-Encoding)	514	RoBERTa, CodeBERT
Huggingface's GPT-2 Tokenizer (Based on byte-level Byte-Pair-Encoding)	1024	GPT-2 (GPT-2 Base, GPT-2 Large, GPT-2 XL, MegatronGPT-2), GPT-J
Huggingface's GPT-2 Tokenizer (Based on byte-level Byte-Pair-Encoding)	2048	GPT-J

[1] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong, "VulDeePecker: A Deep Learning-Based System for Vulnerability Detection," In Proc. NDSS 2018.

Systematic framework

Provider	Language Model	Size	#Parameters		
Nutidio	MegatronBERT	Standard	345M		
Inviula	MegatronGPT-2	Standard	345M		
Hugging Face	BERT	Base Model	110M		
		Base Model	117M		
OpenAI	GPT-2	Large Model	774M		
		XL Model	odel 1.5B		
EleutherAI	GPT-J	Standard	6B		
Hugging Face	DistilBERT	Standard	66M		
Microsoft	CodeBERT	Standard	125M		
Hugging Face	RoBERTa	Standard	125M		
VulDeePecker	BiLSTM	Standard	1.2M		
SySeVR	BiGRU	Standard	1.6M		

Table. Models considered in our studies and their sizes.

owork		BERT, MegatronBERT	Dropout Layer + Linear Layer (size = 3072)
ework		DistilBERT	Linear Layer (size = 3072) + ReLU + Dropout Layer + Linear Layer (size = 3072)
		RoBERTa, CodeBERT	Dropout Layer + Linear Layer (size = 3072) + tanh + Dropout Layer + Linear Layer (size = 3072)
		GPT-2, MegatronGPT-2	Dropout Layer + Linear Layer (size = 1024)
Encoder	Transformer-based models	GPT-J	Linear Layer (size = 2048)
Encoder Encoder BERT GPT	Pre-training (unsupervised learn		
Transformer-based models	Outputs		
Parameters			
	Fine-tuning (supervised learning		

Language Model

Classification Head

Systematic framew .

Encode BERT _ _ _ _ Tran Pre-processing, English texts or feature extractions, Source codes and vectorization Classification Transformer-based Classification models Outputs Head Training data: Code gadgets C/C++ source codes Model Inference Trained model Detection Testing data: Code gadgets C/C++ source codes

Fig. System flow for software vulnerability detection.

Our Results

Datasets

- VulDeePecker Data [1]
 - CWE-119 Buffer Error (BE)
 - CWE-399 Resource Management Error (RME)

Dataset	Туре	Original	Cleaned	Train	Test
Group 1	Buffer Error (BE)	10440	7649	6161	1488
Group I	Non-vulnerable	29313	12262	9768	2494
Crown 2	Resource Management Error (RME)	7285	2757	2214	543
Group 2	Non-vulnerable	14600	5010	4000	1010
Group 3	BE+ RME	17725	10395	8368	2027
Group 5	Combined Non-vulnerable	43913	17197	13704	3491

- SeVC Data [2]: Having 126 types of different vulnerabilities, and divided into four major categories based on its cause:
 - Library/API Function Call
 - Array Usage
 - Pointer Usage
 - Arithmetic Expression

Dataset	Categories	Original	Cleaned	Train	Test	
Crown 4	API Function	64402	54191	43344	10837	
Group 4	Call (AFC)	04403	54101	(V: 10647, NV:32697)	(V: 2611, NV: 8226)	
Crown F	Arithmetic	22154	14454	11563	2891	
Group 5	Expression (AE)	22154	14454	(V: 2642, NV: 8921)	(V: 648, NV: 2243)	
Carry (Array	40000	24166	27332	6834	
Group 6	Usage (AU)	42229	54100	(V: 8237, NV: 19095)	(V: 2145, NV: 4689)	
Creation 7	Pointer	201841	17(992	141506	35377	
Group /	Usage (PU)	291641	1/0005	(V: 21189, NV: 120317)	(V: 5335, NV: 30042)	
Creation 9	AFC + AE +	420(27	20(27(165100	41276	
Group 8	AU + PU	420027	200376	(V: 274804, NV: 145823)	(V: 4769 , NV: 36507)	

Performance of the transformer-based models on VulDeePecker dataset

Dataset and Vulnerability	Metrics	VulDeePecker Original [23]	BiLSTM	BiGRU	BERTBase	GPT-2 Base	CodeBERT	DistilBERT	RoBERTa	GPT-2 Large	GPT-2 XL	MegatronBERT	MegatronGPT-2	GPT-J
	FPR	2.90%	33.86%	15.19%	4.05%	4.20%	2.97%	3.85%	4.48%	2.67%	2.66%	3.25%	2.81%	2.74%
Group 1,	FNR	18.00%	15.27%	35.49%	6.52%	6.44%	4.85%	6.75%	6.56%	4.72%	4.94%	5.24%	5.61%	5.76%
Buffer Error	Precision	82.00%	71.46%	73.04%	93.56%	93.35%	95.27%	93.86%	92.95%	95.74%	95.75%	94.84%	95.49%	95.61%
(BE)	Recall	91.70%	84.73%	64.51%	93.48%	93.56%	95.15%	93.25%	93.44%	95.28%	95.06%	94.76%	94.39%	94.24%
	F1-score	86.60%	77.50%	68.37%	93.52%	93.45%	95.21%	93.55%	93.19%	95.51%	95.40%	94.80%	94.94%	94.90%
Group 2,	FPR	2.80%	16.10%	4.40%	3.32%	3.81%	3.09%	4.40%	2.92%	1.71%	1.77%	2.40%	2.50%	2.17%
Resource	FNR	4.70%	12.63%	10.34%	5.82%	5.01%	4.71%	7.12%	5.20%	3.10%	3.28%	3.53%	3.03%	3.96%
Management	Precision	95.30%	84.50%	91.58%	93.79%	92.97%	94.25%	91.82%	94.51%	96.79%	96.66%	95.54%	95.38%	95.96%
Error	Recall	94.60%	87.37%	89.66%	94.18%	94.99%	95.29%	92.88%	94.80%	96.90%	96.72%	96.47%	96.97%	96.04%
(RME)	F1-score	95.00%	85.86%	90.59%	93.98%	93.96%	94.76%	92.34%	94.65%	96.84%	96.69%	96.00%	96.16%	95.98%

Table. Binary classification task.

Dataset and Vulnerability	Metrics	BiLSTM	BiGRU	BERTBase	GPT-2 Base	CodeBERT	DistilBERT	RoBERTa	GPT-2 Large	GPT-2 XL	MegatronBERT	MegatronGPT-2	GPT-J
	FPR	21.29%	7.03%	2.37%	2.95%	1.91%	2.42%	2.41%	1.60%	1.47%	1.83%	2.03%	1.44%
Group 3,	FNR	13.95%	38.64%	4.85%	5.41%	4.83%	5.83%	5.68%	4.96%	4.77%	4.61%	5.08%	5.22%
Buffer Error	Precision	61.00%	78.41%	93.95%	92.55%	95.08%	93.78%	93.82%	95.84%	96.17%	95.28%	94.78%	96.22%
(BE)	Recall	86.05%	61.36%	95.15%	94.59%	95.17%	94.17%	94.32%	95.04%	95.23%	95.39%	94.92%	94.78%
	F1-score	71.39%	68.03%	94.55%	93.56%	95.12%	93.97%	94.07%	95.43%	95.70%	95.34%	94.85%	95.49%
Group 3,	FPR	3.40%	0.66%	0.66%	1.02%	0.64%	0.73%	0.75%	0.42%	0.42%	0.50%	0.56%	0.25%
Resource	FNR	10.68%	7.49%	4.07%	4.67%	4.12%	4.55%	4.07%	2.85%	3.10%	3.64%	3.27%	5.88%
Management	Precision	74.48%	93.99%	94.12%	91.20%	94.34%	93.54%	93.40%	96.23%	96.27%	95.52%	95.02%	97.68%
Error	Recall	89.32%	92.51%	95.93%	95.33%	95.88%	95.45%	95.93%	97.15%	96.90%	96.36%	96.73%	94.12%
(RME)	F1-score	81.20%	93.23%	95.02%	93.21%	95.10%	94.48%	94.65%	96.68%	96.58%	95.93%	95.86%	95.87%
Group 3,	Precision	64.14%	83.08%	93.99%	92.19%	94.88%	93.72%	93.71%	95.94%	96.20%	95.34%	94.83%	96.60%
BE + RME	Recall	86.92%	69.57%	95.36%	94.79%	95.36%	94.51%	94.74%	95.59%	95.68%	95.65%	95.39%	94.61%
(Global Avg.)	F1-score	73.80%	75.25%	94.67%	93.47%	95.12%	94.11%	94.22%	95.76%	95.94%	95.49%	95.11%	95.59%
Group 3,	Precision	67.74%	86.20%	94.04%	91.88%	94.71%	93.66%	93.61%	96.03%	96.22%	95.40%	94.90%	96.95%
BE+ RME	Recall	87.69%	76.93%	95.54%	94.96%	95.53%	94.81%	95.12%	96.09%	96.07%	95.87%	95.82%	94.45%
(Macro Avg.)	F1-score	76.42%	81.08%	94.78%	93.39%	95.11%	94.23%	94.36%	96.06%	96.15%	95.63%	95.36%	95.68%

Table. Multi-class classification task.

Performance of the transformer-based models on SeVC dataset

Dataset and Vulnerability	Metrics	VulDeePecker (BiLSTM [22])	SySeVR (BiLSTM [22])	Our BiLSTM	BiGRU	BERTBase	GPT-2 Base
Group 4,	FPR	5.50%	2.10%	21.08%	15.50%	3.63%	3.28%
API	FNR	22.50%	17.50%	8.91%	8.80%	9.06%	11.01%
Function	Precision	79.10%	91.50%	81.21%	85.47%	89.14%	89.87%
Call	Recall	77.52%	82.56%	91.09%	91.20%	90.94%	88.99%
(AFC)	F1- score	78.30%	86.80%	85.87%	88.24%	90.03%	89.43%
Crown F	FPR	NA	3.80%	15.43%	18.34%	3.09%	2.32%
Group 5,	FNR	NA	17.10%	8.30%	6.55%	9.32%	11.21%
Empression	Precision	NA	88.30%	85.60%	83.59%	90.16%	92.28%
(AE)	Recall	NA	82.87%	91.70%	93.45%	90.68%	88.79%
(AL)	F1- score	NA	85.50%	88.55%	88.25%	90.42%	90.50%
C (FPR	NA	1.50%	19.73%	18.15%	3.58%	4.32%
Group 6,	FNR	NA	18.30%	14.26%	13.59%	14.35%	12.24%
Array	Precision	NA	87.90%	81.29%	82.64%	91.30%	89.92%
(AII)	Recall	NA	81.72%	85.74%	86.41%	85.65%	87.76%
(AU)	F1- score	NA	84.70%	83.46%	84.49%	88.38%	88.82%
0 7	FPR	NA	1.30%	15.66%	12.99%	1.40%	1.54%
Group /,	FNR	NA	19.70%	5.43%	4.78%	7.96%	8.25%
Pointer	Precision	NA	87.30%	85.80%	87.99%	92.02%	91.29%
Usage	Recall	NA	80.39%	94.57%	95.22%	92.04%	91.75%
(PU)	F1- score	NA	83.70%	89.97%	91.46%	92.03%	91.52%

Vulnerability	Metrics	BERTBase	GPT-2 Base
Group 8,	FPR	0.11%	0.05%
API	FNR	25.64%	33.33%
Function	Precision	83.45%	90.83%
Call	Recall	74.36%	66.67%
(AFC)	F1- score	78.64%	76.89%
Carry R	FPR	0.21%	0.27%
Group 8,	FNR	9.96%	9.60%
Arithmetic	Precision	85.40%	81.94%
(AE)	Recall	90.04%	90.40%
(AL)	F1- score	87.65%	85.96%
0 8	FPR	0.39%	0.44%
Group 8,	FNR	12.44%	11.18%
Array	Precision	85.16%	83.70%
(AII)	Recall	87.56%	88.82%
(AU)	F1- score	86.34%	86.19%
Creare 8	FPR	0.79%	0.87%
Group 8,	FNR	9.60%	11.35%
Pointer	Precision	89.85%	88.77%
(DII)	Recall	90.40%	88.65%
(PO)	F1- score	90.12%	88.71%
Group 8,	Precision	87.95%	86.88%
AFC + AE + AU + PU	Recall	88.73%	87.47%
(Global Avg.)	F1 score	88.34%	87.18%
Group 8,	Precision	85.97%	86.31%
AFC + AE + AU + PU	Recall	85.59%	83.63%
(Macro Avg.)	F1 score	85.78%	84.95%

Table. Binary classification task.

Table. Multi-class classification task.

Choosing the models

Fig. Multi-class classification task.

Fig. Total time taken in hours to fine-tune for 10 epochs.

Insight: While choosing the model, if there is no time constraint for fine-tuning, we can pick one of the best performing models, e.g., GPT-2 Large for the Group 1 dataset and F1-score. If there is a time constraint, then we need to pick the model that has the best trade-off between the performance and fine-tuning time, e.g., CodeBERT for Group 1 dataset and F1-score

Discussion on platforms

	HuggingFace	Megatron	DeepSpeed	Horovod
Description	A machine learning framework for Jax, Pytorch and TensorFlow	An implementation of Transformer	A deep learning optimization library for distributed training	A python library for data parallelism
Data Parallelism	1	1	1	1
Pipeline Parallelism	Partial (need customization)	1	1	×
Tensor Parallelism	×	1	1	X
Memory efficiency	Normal	Normal	Excellent	Normal
Training speed	Normal	Good	Great	Normal
Туре	Can use Megatron-LM, and all models	Dedicated only for Megatron-LM	Just a library, supplement tool for memory efficiency and speed	Dedicated only for Data Parallelism

Table. Summary of popular open-sourced ML platforms.

Model	GPT-2 XL	GPT-2 XL	GPT-2 XL	GPT-2 XL
Number of GPU	1	2	1	2
Applied DeepSpeed	No	No	Stage 2	Stage 2
Parallelization	-	Data	-	Data
Epoch	2	2	2	2
Batch Size / GPU	16	16	16	16
Train Samples	22072	22072	22072	22072
Train Runtime	7H:38M:06S	3H:52M:09S	5H:38M:46S	3H:23M:16S
Train Runtime / epoch	3H:49M:03S	1H:56M:05S	2H:49M:23S	1H:41M:38S
Train Samples / second	1.606	3.169	2.172	3.620
Train Samples / second / GPU	1.606	1.584	2.172	1.810
Train Runtime for 1 sample	0.623	0.631	0.460	0.553
Multi-GPU overhead	-	1.36%	-	20.00%
Average GPU RAM usage	20722	25755	10515	10005
(MB, batch size: 1)	27033	33733	12315	12205
DeepSpeed Runtime Gain	-	-	26.05%	12.45%
DeepSpeed Memory Gain			57.77%	65.64%

Table. Fine-tuning performance GPT-2 XL model with/without DeepSpeed.

Challenges:

- (1) No Admin privilege
- (2) Model parallelism
- (3) Small GPU RAM

Insight:

- (1) Stick with data parallelism if the model fits inside one GPU, and
- (2) If we cannot accommodate the model inside one GPU, go with
 - Huggingface and DeepSpeed frameworks.

Conclusion

- Studied transformer-based language models for software vulnerability detection.
- This is the first work that examines the transformer-based language model on code gadgets.
- Overall, transformer-based language models perform well in software vulnerability detection in C/C++ source codes.
- Future works and limitations
 - Studying more vulnerabilities (besides C/C++ source codes) and increasing the dataset size.
 - Improving the code gadget extraction (besides standard code gadgets).

Thank you!

