ArchiveSafe LT: Secure Long-term Archiving System

Moe Sabry, Reza Samavi

Introduction and Motivation

Long-Term Secure Archiving

- Every year the amount of digitally stored sensitive information increases significantly.
- Some governmental and legal documents, health and tax records are required to be securely archived for decades to comply with various laws and regulations.
- Regular cryptographic schemes are not guaranteed to stay secure for such long time periods.
- Current solutions rely on information-theoretic techniques e.g.: Multi-server secret sharing.
- They require costly and complicated setup:
 - Private channels for Quantum key distribution (QKD) & One time pads (OTP)
 - Trusted Execution Environments (TEEs)

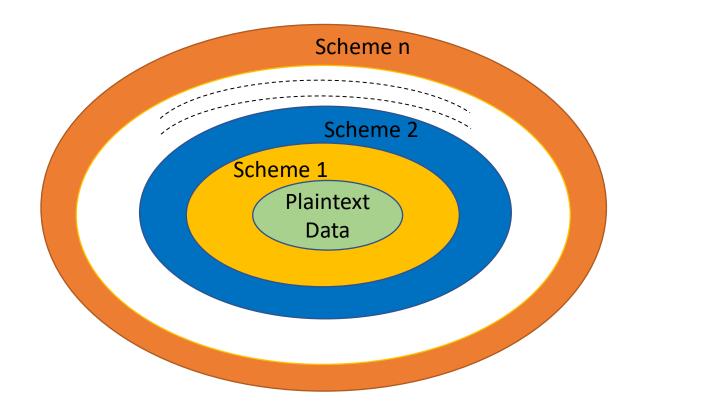
Gap and Motivation

• Problem:

 Long-Term secure archiving is essential but current solutions are complicated and costly.

• Thought:

 Is there any other way to prolong the lifespan of standard cryptographic schemes?


• Idea:

Robust Combiners!

Robust Combiners

A Robust Combiner is a combination of multiple cryptographic schemes into one so the resulting scheme is robust to the failure of any of the combined ones.

Contributions

Contributions

• We developed *ArchiveSafe LT*, a framework ensuring long-term integrity and confidentiality without the complexity and cost required by the state-of-the-art systems.

• ArchiveSafe LT is built on the novel idea of utilizing a pool of computationally-secure schemes to build robust combiners to secure the data.

• ArchiveSafe LT provides significant performance improvement and cost reduction compared to the currently available systems.

Related Work

- LINCOS (2017)¹ utilizes proactive secret sharing and information-theoretic hiding commitments for integrity and authenticity protection.
- PROPYLA (2018)² enables partial data integrity and authenticity checks. Utilizes oblivious random access machine to hide access patterns.
- ELSA (2018)³ introduces more efficient data integrity and authenticity checks.
- SAFE (2020)⁴ Utilizes a trusted execution environment (TEE) provider to perform secret shares generation.

^[1] Braun, Johannes, et al. "LINCOS: A storage system providing long-term integrity, authenticity, and confidentiality."

^[2] Geihs, Matthias, et al. "Propyla: privacy preserving long-term secure storage."

^[3] Muth, Philipp, et al. "ELSA: efficient long-term secure storage of large datasets."

^[4] Buchmann, Johannes, et al. "SAFE: A Secure and Efficient Long-Term Distributed Storage System."

ArchiveSafe LT Framework

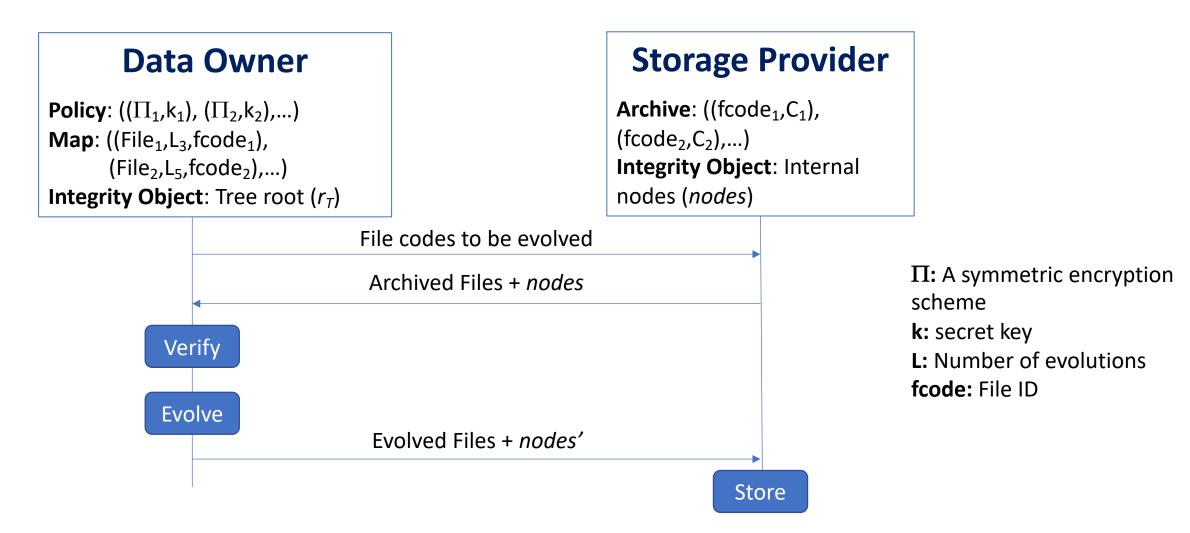
Framework Overview

ArchiveSafe LT defines an archive as a group of data files.

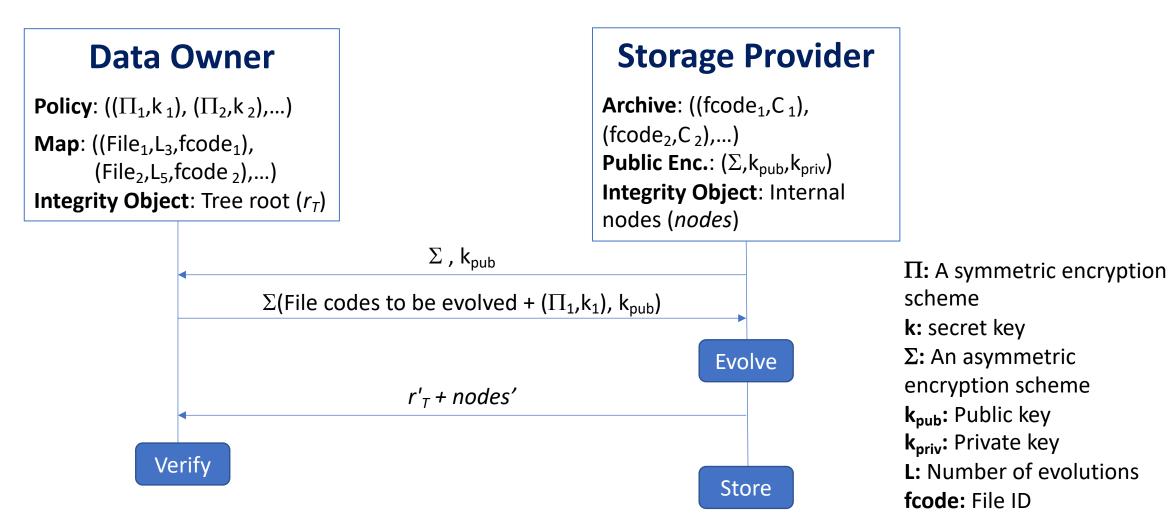
- The framework implements six operations to cover the archive life cycle:
 - Initialize()
 - Update()
 - EvolveIntegrity()
 - EvolveConfidentiality()
 - Retrieve()
 - Delete()

Framework Overview

• Files can be updated, deleted or retrieved individually without processing the whole archive. A unique feature of *ArchiveSafe LT*.

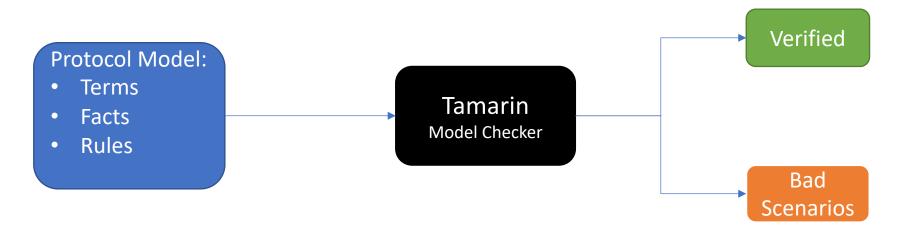

 When a cryptographic scheme is compromised, the Evolution protocol is initiated to strengthen the combiner by adding an additional secure scheme to it.

Designs Overview


• We present two system designs based on the *ArchiveSafe LT* framework:

ASLT-D1	ASLT-D2
<u>Untrusted</u> or incapable storage provider	<u>Trusted</u> and capable storage provider
Data owner does all processing	Storage provider performs evolution processes

Design I - Evolution



Design II - Evolution

Security Proofs - Tamarin

 To ensure no adversarial scenario is missed, we utilized an automatic prover (Tamarin*) for the confidentiality and integrity security proofs.

Limitation: We modeled up to two evolution processes.

Tamarin - Model

Functions:

KeyGen/2, Lock/3, Unlock/3

Lock(Schema, Key, Plaintext Data)

Equations:

Unlock(schemenum, KeyGen(schemenum, sk),
 Lock(schemenum, KeyGen(schemenum, sk), data)) = data

Rules:

- Oracles: OCorruptKey, OUpdate, OEvolve, ODelete, ORetrieve2/3, OForge2/3.
- Challenges: DistinguishChallenge, IntegrityChallenge.

Tamarin – Confidentiality Lemma

All fname fcontents #tchallenge

not(Ex #tk . K(fcontents) @ #tk)

A valid challenge exists

This file was not retrieved by the adversary before

The adversary does not have the secured archive and broke schemes 1 & 2 at the same time

The adversary does not have the secured archive and broke schemes 2 & 3 at the same time

Tamarin – Integrity Lemma

All fname layer1 layer2 fcontents #tforgeanswer

•

ForgeAnswer(fname, layer1, layer2, fcontents) @ #tforgeanswer

```
==>
```

(Ex fname2 #tstored . Stored(fname2, fcontents) @ #tstored)

(Ex #tc1 #tc2 . Corrupted(layer1) @ #tc1 & Corrupted(layer2) @ #tc2)

A valid challenge exists

Adversary is not presenting a valid file under a different valid file name

The adversary did not broke schemes 1 & 2 at the same time

Evaluation and Results

Evaluation Experiment

- We measure the system's performance through an experiment mimicking the evolution of an archive:
 - 1992: Initial creation using DES + 3DES and MD2 + MD5.
 - **2001**: 1st evolution using AES-128 and SHA-256.
 - 2004: 2nd evolution using AES-192 and SHA-384.
 - **2015**: 3rd evolution using AES-256 and SHA3-512.

Evaluation Experiment Setup

• The experiment was performed using HP Z420 (Ubuntu Linux 20.04.3 LTS, 8-core Intel Xeon CPU E5-1620 3.6 GHz, 32 GiB RAM, 1 TB SSD).

- We performed 100 repetitions of the following tasks:
 - 1000 sample files of each size were randomly generated.
 - We measured times for:
 - Initial creation.
 - Evolution.
 - Retrieval.

Results – Performance & Space I

	LINCOS ¹ , PROPYLA ² , ELSA ³	ArchiveSafe LT	Trend
Creation Time	55.2 Hrs.	7.7 Hrs. (± 2%)	Improvement increases with larger archive sizes
Evolution Time	110.4 Hrs.	0.7 Hrs. (± 2%)	Improvement increases with larger archive sizes
Storage Space	3x	1x	Improvement increases with more shares

ArchiveSafe LT time & space utilization compared to other systems On a 158 GB Archive

^[1] Braun, Johannes, et al. "LINCOS: A storage system providing long-term integrity, authenticity, and confidentiality."

^[2] Geihs, Matthias, et al. "Propyla: privacy preserving long-term secure storage."

^[3] Muth, Philipp, et al. "ELSA: efficient long-term secure storage of large datasets."

Results – Performance & Space II

	SAFE ⁴	ArchiveSafe LT	Trend
Creation Time	10 Sec.	3.3 Sec. (± 2%)	Improvement increases with larger archive sizes
Evolution Time	109 Sec.	3.2 Sec. (± 2%)	Improvement increases with larger archive sizes
Storage Space	3x	1x	Improvement increases with more shares

ArchiveSafe LT time & space utilization compared to SAFE (TEE)
On a 10 MB Archive

Conclusion

Conclusion

 ArchiveSafe LT provides long-term integrity and confidentiality using standard cryptographic schemes through a robust combiner.

• Compared to state-of-the-art approaches, *ArchiveSafe LT* reduces cost and complexity and provides better performance and space utilization.

Future Work:

Improve ArchiveSafe LT efficiency and robustness in supporting long-term integrity.

ArchiveSafe LT: Secure Long-term Archiving System

- A system providing long-term integrity and confidentiality through robust combiners.
- Utilizes standard cryptographic schemes.
- Can be utilized for in-house or outsourced storage.
- Better performance and space utilization than similar systems.
- ➤ We gratefully acknowledge Dr. Douglas Stebila for many helpful comments and discussions on this paper.

Authors: Moe Sabry (alym2@mcmaster.ca), Reza Samavi (samavi@ryerson.ca)

Paper: https://dl.acm.org/doi/10.1145/3564625.3564635

Artifacts: https://github.com/samavi/pubs/tree/main/ArchiveSafeLT

Thank you!